8,939 research outputs found
The random phase approximation applied to ice
Standard density functionals without van der Waals interactions yield an
unsatisfactory description of ice phases, specifically, high density phases
occurring under pressure are too unstable compared to the common low density
phase I observed at ambient conditions. Although the description is
improved by using functionals that include van der Waals interactions, the
errors in relative volumes remain sizable. Here we assess the random phase
approximation (RPA) for the correlation energy and compare our results to
experimental data as well as diffusion Monte Carlo data for ice. The RPA yields
a very balanced description for all considered phases, approaching the accuracy
of diffusion Monte Carlo in relative energies and volumes. This opens a route
towards a concise description of molecular water phases on surfaces and in
cavities
The impact of grassland management regime on the community structure of selected bacterial groups in soils
The impact of long-term grassland management regimes on microbial community structure in soils was assessed using multivariate analysis of polymerase chain reaction^denaturing gradient gel electrophoresis (PCR^DGGE) banding patterns of selected bacterial groups and PLFA (phospholipid fatty acid) profiling. The management regimes assessed were inorganic nitrogen (N) fertiliser application and soil drainage. PCR^DGGE profiles of the eubacteria, actinomycetes, ammonia oxidisers and pseudomonads were assessed by principal co-ordinate analysis of similarity indices which were generated from binary data using both Dice and Jaccard coefficients. The analysis of binary DGGE data revealed significant impacts of N fertiliser on the eubacterial and actinomycete community structure using the Jaccard coefficient, whilst N fertiliser had a significant impact on the actinomycete community structure only when using similarity indices generated from the Dice coefficient. Soil drainage had a significant impact on the community structures of the actinomycetes and the pseudomonads using both Dice and Jaccard derived similarity indices. Multivariate analysis of principal components derived from PLFA profiling revealed that N fertiliser had a significant impact on the microbial community structure. Although drainage alone was not a significant factor in discriminating between PLFA community profiles of the different treatments, there was a significant interaction with N fertiliser. Analysis of principal component analysis (PCA) loadings revealed that PLFAs i15:0 and i17:0 were partly responsible for the clustering away of the undrained^N fertilised treatment. Although soil management regime influenced some background soil data, correlation analysis using PC1 from PLFA data revealed no significant relationship with soil organic matter, pH, total C and total N
Towards Einstein-Podolsky-Rosen quantum channel multiplexing
A single broadband squeezed field constitutes a quantum communication
resource that is sufficient for the realization of a large number N of quantum
channels based on distributed Einstein-Podolsky-Rosen (EPR) entangled states.
Each channel can serve as a resource for, e.g. independent quantum key
distribution or teleportation protocols. N-fold channel multiplexing can be
realized by accessing 2N squeezed modes at different Fourier frequencies. We
report on the experimental implementation of the N=1 case through the
interference of two squeezed states, extracted from a single broadband squeezed
field, and demonstrate all techniques required for multiplexing (N>1). Quantum
channel frequency multiplexing can be used to optimize the exploitation of a
broadband squeezed field in a quantum information task. For instance, it is
useful if the bandwidth of the squeezed field is larger than the bandwidth of
the homodyne detectors. This is currently a typical situation in many
experiments with squeezed and two-mode squeezed entangled light.Comment: 4 pages, 4 figures. In the new version we cite recent experimental
work bei Mehmet et al., arxiv0909.5386, in order to clarify the motivation of
our work and its possible applicatio
Magnetically-controlled velocity selection in a cold atom sample using stimulated Raman transitions
We observe velocity-selective two-photon resonances in a cold atom cloud in
the presence of a magnetic field. We use these resonances to demonstrate a
simple magnetometer with sub-mG resolution. The technique is particularly
useful for zeroing the magnetic field and does not require any additional laser
frequencies than are already used for standard magneto-optical traps. We verify
the effects using Faraday rotation spectroscopy.Comment: 5 pages, 6 figure
Absolute absorption line-shape measurements at the shot-noise limit
Here, we report a measurement scheme for determining an absorption profile with an accuracy imposed solely by photon shot noise. We demonstrate the power of this technique by measuring the absorption of cesium vapor with an uncertainty at the 2-ppm level. This extremely high signal-to-noise ratio allows us to directly observe the homogeneous line-shape component of the spectral profile, even in the presence of Doppler broadening, by measuring the spectral profile at a frequency detuning more than 200 natural linewidths from the line center. We then use this tool to discover an optically induced broadening process that is quite distinct from the well-known power broadening phenomenon
A Bayesian parameter estimation approach to pulsar time-of-arrival analysis
The increasing sensitivities of pulsar timing arrays to ultra-low frequency
(nHz) gravitational waves promises to achieve direct gravitational wave
detection within the next 5-10 years. While there are many parallel efforts
being made in the improvement of telescope sensitivity, the detection of stable
millisecond pulsars and the improvement of the timing software, there are
reasons to believe that the methods used to accurately determine the
time-of-arrival (TOA) of pulses from radio pulsars can be improved upon. More
specifically, the determination of the uncertainties on these TOAs, which
strongly affect the ability to detect GWs through pulsar timing, may be
unreliable. We propose two Bayesian methods for the generation of pulsar TOAs
starting from pulsar "search-mode" data and pre-folded data. These methods are
applied to simulated toy-model examples and in this initial work we focus on
the issue of uncertainties in the folding period. The final results of our
analysis are expressed in the form of posterior probability distributions on
the signal parameters (including the TOA) from a single observation.Comment: 16 pages, 4 figure
Atom-wave diffraction between the Raman-Nath and the Bragg regime: Effective Rabi frequency, losses, and phase shifts
We present an analytic theory of the diffraction of (matter) waves by a
lattice in the "quasi-Bragg" regime, by which we mean the transition region
between the long-interaction Bragg and "channelling" regimes and the
short-interaction Raman-Nath regime. The Schroedinger equation is solved by
adiabatic expansion, using the conventional adiabatic approximation as a
starting point, and re-inserting the result into the Schroedinger equation to
yield a second order correction. Closed expressions for arbitrary pulse shapes
and diffraction orders are obtained and the losses of the population to output
states otherwise forbidden by the Bragg condition are derived. We consider the
phase shift due to couplings of the desired output to these states that depends
on the interaction strength and duration and show how these can be kept
negligible by a choice of smooth (e.g., Gaussian) envelope functions even in
situations that substantially violate the adiabaticity condition. We also give
an efficient method for calculating the effective Rabi frequency (which is
related to the eigenvalues of Mathieu functions) in the quasi-Bragg regime.Comment: Minor additions, more concise text. To appear in Phys. Rev. A. 20
pages, 10 figure
Agent-based homeostatic control for green energy in the smart grid
With dwindling non-renewable energy reserves and the adverse effects of climate change, the development of the smart electricity grid is seen as key to solving global energy security issues and to reducing carbon emissions. In this respect, there is a growing need to integrate renewable (or green) energy sources in the grid. However, the intermittency of these energy sources requires that demand must also be made more responsive to changes in supply, and a number of smart grid technologies are being developed, such as high-capacity batteries and smart meters for the home, to enable consumers to be more responsive to conditions on the grid in real-time. Traditional solutions based on these technologies, however, tend to ignore the fact that individual consumers will behave in such a way that best satisfies their own preferences to use or store energy (as opposed to that of the supplier or the grid operator). Hence, in practice, it is unclear how these solutions will cope with large numbers of consumers using their devices in this way. Against this background, in this paper, we develop novel control mechanisms based on the use of autonomous agents to better incorporate consumer preferences in managing demand. These agents, residing on consumers' smart meters, can both communicate with the grid and optimise their owner's energy consumption to satisfy their preferences. More specifically, we provide a novel control mechanism that models and controls a system comprising of a green energy supplier operating within the grid and a number of individual homes (each possibly owning a storage device). This control mechanism is based on the concept of homeostasis whereby control signals are sent to individual components of a system, based on their continuous feedback, in order to change their state so that the system may reach a stable equilibrium. Thus, we define a new carbon-based pricing mechanism for this green energy supplier that takes advantage of carbon-intensity signals available on the internet in order to provide real-time pricing. The pricing scheme is designed in such a way that it can be readily implemented using existing communication technologies and is easily understandable by consumers. Building upon this, we develop new control signals that the supplier can use to incentivise agents to shift demand (using their storage device) to times when green energy is available. Moreover, we show how these signals can be adapted according to changes in supply and to various degrees of penetration of storage in the system. We empirically evaluate our system and show that, when all homes are equipped with storage devices, the supplier can significantly reduce its reliance on other carbon-emitting power sources to cater for its own shortfalls. By so doing, the supplier reduces the carbon emission of the system by up to 25% while the consumer reduces its costs by up to 14.5%. Finally, we demonstrate that our homeostatic control mechanism is not sensitive to small prediction errors and the supplier is incentivised to accurately predict its green production to minimise costs
Testing Lorentz invariance by use of vacuum and matter filled cavity resonators
We consider tests of Lorentz invariance for the photon and fermion sector
that use vacuum and matter-filled cavities. Assumptions on the wave-function of
the electrons in crystals are eliminated from the underlying theory and
accurate sensitivity coefficients (including some exceptionally large ones) are
calculated for various materials. We derive the Lorentz-violating shift in the
index of refraction n, which leads to additional sensitivity for matter-filled
cavities ; and to birefringence in initially isotropic media. Using published
experimental data, we obtain improved bounds on Lorentz violation for photons
and electrons at levels of 10^-15 and below. We discuss implications for future
experiments and propose a new Michelson-Morley type experiment based on
birefringence in matter.Comment: 15 pages, 8 table
Metaphoric coherence: Distinguishing verbal metaphor from `anomaly\u27
Theories and computational models of metaphor comprehension generally circumvent the question of metaphor versus “anomaly” in favor of a treatment of metaphor versus literal language. Making the distinction between metaphoric and “anomalous” expressions is subject to wide variation in judgment, yet humans agree that some potentially metaphoric expressions are much more comprehensible than others. In the context of a program which interprets simple isolated sentences that are potential instances of cross‐modal and other verbal metaphor, I consider some possible coherence criteria which must be satisfied for an expression to be “conceivable” metaphorically. Metaphoric constraints on object nominals are represented as abstracted or extended along with the invariant structural components of the verb meaning in a metaphor. This approach distinguishes what is preserved in metaphoric extension from that which is “violated”, thus referring to both “similarity” and “dissimilarity” views of metaphor. The role and potential limits of represented abstracted properties and constraints is discussed as they relate to the recognition of incoherent semantic combinations and the rejection or adjustment of metaphoric interpretations
- …