3,731 research outputs found

    Central potential and examples of hidden algebra structure

    Get PDF
    We propose two generalisations of the Coulomb potential equation of quantum mechanics and investigate the occurence of algebraic eigenfunctions for the corresponding Scrh\"odinger equations. Some relativistic counterparts of these problems are also discussed.Comment: 8 pages, latex, no figure

    Microspore embryogenesis in barley: anther pre-treatment stimulates plant defence gene expression

    Get PDF
    Microspore embryogenesis (ME) is a process in which the gametophytic pollen programme of the microspore is reorientated towards a new embryo sporophytic programme. This process requires a stress treatment, usually performed in the anther or isolated microspores for several days. Despite the universal use of stress to induce ME, very few studies have addressed the physiological processes that occur in the anther during this step. To further understand the processes triggered by stress treatment, we followed the response of anthers by measuring the expression of stress-related genes in two barley (Hordeum vulgare L.) cultivars differing in their ME response. Genes encoding enzymes involved in oxidative stress (glutathione-S-transferase, GST; oxalate oxidase, OxO), in the synthesis of jasmonic acid (13-lipoxygenase, Lox; allene oxide cyclase, AOC; allene oxide synthase, AOS) and in the phenylpropanoid pathway (phenylalanine ammonia lyase, PAL), as well as those encoding PR proteins (Barwin, chitinase 2b, Chit 2b; glucanase, Gluc; basic pathogenesis-related protein 1, PR1; pathogenesis-related protein 10, PR10) were up-regulated in whole anthers upon stress treatment, indicating that anther perceives stress and reacts by triggering general plant defence mechanisms. In particular, both OxO and Chit 2b genes are good markers of anther reactivity owing to their high level of induction during the stress treatment. The effect of copper sulphate appeared to limit the expression of defence-related genes, which may be correlated with its positive effect on the yield of microspor

    Interaction between C/EBPβ and Tax down-regulates human T-cell leukemia virus type I transcription

    Get PDF
    AbstractThe human T-cell leukemia virus type I (HTLV-I) Tax protein trans-activates viral transcription through three imperfect tandem repeats of a 21-bp sequence called Tax-responsive element (TxRE). Tax regulates transcription via direct interaction with some members of the activating transcription factor/CRE-binding protein (ATF/CREB) family including CREM, CREB, and CREB-2. By interacting with their ZIP domain, Tax stimulates the binding of these cellular factors to the CRE-like sequence present in the TxREs. Recent observations have shown that CCAAT/enhancer binding protein β (C/EBPβ) forms stable complexes on the CRE site in the presence of CREB-2. Given that C/EBPβ has also been found to interact with Tax, we analyzed the effects of C/EBPβ on viral Tax-dependent transcription. We show here that C/EBPβ represses viral transcription and that Tax is no more able to form a stable complex with CREB-2 on the TxRE site in the presence of C/EBPβ. We also analyzed the physical interactions between Tax and C/EBPβ and found that the central region of C/EBPβ, excluding its ZIP domain, is required for direct interaction with Tax. It is the first time that Tax is described to interact with a basic leucine-zipper (bZIP) factor without recognizing its ZIP domain. Although unexpected, this result explains why C/EBPβ would be unable to form a stable complex with Tax on the TxRE site and could then down-regulate viral transcription. Lastly, we found that C/EBPβ was able to inhibit Tax expression in vivo from an infectious HTLV-I molecular clone. In conclusion, we propose that during cell activation events, which stimulate the Tax synthesis, C/EBPβ may down-regulate the level of HTLV-I expression to escape the cytotoxic-T-lymphocyte response

    Can Andean Potato be agronomically biofortified with iron and zinc fertilizers?

    Get PDF
    This field research shows that application of Zn fertilizers or Zn-enriched NPK fertilizers offers a prompt solution to increasing the Zn concentration in Andean potato tubers, and represents a useful complementary approach to on-going breeding programs. The diploid Chaucha cultivars that showed high tuber Zn concentrations in the absence of Zn fertilization also showed correspondingly higher Zn concentration in tubers following foliar and soil applied Zn. High levels of Zn in potato tubers may significantly improve the diets of Zn-deficient populations with high intake of potato and contribute to better nutritio

    Lipid-protein interaction in the phosphatidylcholine exchange protein.

    Full text link

    Molecular semiconductors and the Ioffe–Regel criterion: A terahertz study on band transport in DBTTT

    Get PDF
    Terahertz electromodulation spectroscopy provides insight into the physics of charge carrier transport in molecular semiconductors. The work focuses on thin-film devices of dibenzothiopheno[6,5-b:6′,5′-f]thieno[3,2-b]thiophene. Frequency-resolved data show a Drude-like response of the hole gas in the accumulation region. The temperature dependence of the mobilities follows a T1/2 power law. This indicates that the thermal mean free path of the charge carriers is restricted by disorder. Only a fraction of approximately 5% of the injected carriers fulfills the Ioffe–Regel criterion and participates in band transport.info:eu-repo/semantics/publishe

    Conductivity in organic semiconductors hybridized with the vacuum field

    Full text link
    Organic semiconductors have generated considerable interest for their potential for creating inexpensive and flexible devices easily processed on a large scale [1-11]. However technological applications are currently limited by the low mobility of the charge carriers associated with the disorder in these materials [5-8]. Much effort over the past decades has therefore been focused on optimizing the organisation of the material or the devices to improve carrier mobility. Here we take a radically different path to solving this problem, namely by injecting carriers into states that are hybridized to the vacuum electromagnetic field. These are coherent states that can extend over as many as 10^5 molecules and should thereby favour conductivity in such materials. To test this idea, organic semiconductors were strongly coupled to the vacuum electromagnetic field on plasmonic structures to form polaritonic states with large Rabi splittings ca. 0.7 eV. Conductivity experiments show that indeed the current does increase by an order of magnitude at resonance in the coupled state, reflecting mostly a change in field-effect mobility as revealed when the structure is gated in a transistor configuration. A theoretical quantum model is presented that confirms the delocalization of the wave-functions of the hybridized states and the consequences on the conductivity. While this is a proof-of-principle study, in practice conductivity mediated by light-matter hybridized states is easy to implement and we therefore expect that it will be used to improve organic devices. More broadly our findings illustrate the potential of engineering the vacuum electromagnetic environment to modify and to improve properties of materials.Comment: 16 pages, 13 figure
    • …
    corecore