1,945 research outputs found

    Tectonic evolution of a continental collision zone: A thermomechanical numerical model

    Get PDF
    We model evolution of a continent-continent collision and draw some parallels with the tectonic evolution of the Himalaya. We use a large-scale visco-plasto-elastic thermomechanical model that has a free upper surface, accounts for erosion and deposition and allows for all modes of lithospheric deformation. For quartz/olivine rheology and 60 mm/yr convergence rate, the continental subduction is stable, and the model predicts three distinct phases. During the phase 1 (120 km or 6% of shortening), deformation is characterized by back thrusting around the suture zone. Some amount of delaminated lower crust accumulates at depth. During phase 2 (120 km–420 km or 6%–22% of shortening), this crustal root is exhumed (medium- to high-grade rocks) along a newly formed major thrust fault. This stage bears similarities with the period of coeval activity of the Main Central thrust and of the South Tibetan Detachment between 20–16 Myr ago. During phase 3 (>420 km or 22% of shortening), the crust is scraped off from the mantle lithosphere and is incorporated into large crustal wedge. Deformation is localized around frontal thrust faults. This kinematics should produce only low- to medium-grade exhumation. This stage might be compared with the tectonics that has prevailed in the Himalaya over the last 15 Myr allowing for the formation of the Lesser Himalaya. The experiment is conducted at constant convergence rate, which implies increasing compressive force. Considering that this force is constant in nature, this result may be equivalent to a slowing down of the convergence rate as was observed during the India-Asia collision

    Downscaling of fracture energy during brittle creep experiments

    Get PDF
    We present mode 1 brittle creep fracture experiments along fracture surfaces that contain strength heterogeneities. Our observations provide a link between smooth macroscopic time-dependent failure and intermittent microscopic stress-dependent processes. We find the large-scale response of slow-propagating subcritical cracks to be well described by an Arrhenius law that relates the fracture speed to the energy release rate. At the microscopic scale, high-resolution optical imaging of the transparent material used (PMMA) allows detailed description of the fracture front. This reveals a local competition between subcritical and critical propagation (pseudo stick-slip front advances) independently of loading rates. Moreover, we show that the local geometry of the crack front is self-affine and the local crack front velocity is power law distributed. We estimate the local fracture energy distribution by combining high-resolution measurements of the crack front geometry and an elastic line fracture model. We show that the average local fracture energy is significantly larger than the value derived from a macroscopic energy balance. This suggests that homogenization of the fracture energy is not straightforward and should be taken cautiously. Finally, we discuss the implications of our results in the context of fault mechanics

    Interplay of seismic and aseismic deformations during earthquake swarms: An experimental approach

    Get PDF
    Observations of earthquake swarms and slow propagating ruptures on related faults suggest a close relation between the two phenomena. Earthquakes are the signature of fast unstable ruptures initiated on localized asperities while slow aseismic deformations are experienced on large stable segments of the fault plane. The spatial proximity and the temporal coincidence of both fault mechanical responses highlight the variability of fault rheology. However, the mechanism relating earthquakes and aseismic processes is still elusive due to the difficulty of imaging these phenomena of large spatiotemporal variability at depth. Here we present laboratory experiments that explore, in great detail, the deformation processes of heterogeneous interfaces in the brittle-creep regime. We track the evolution of an interfacial crack over 7 orders of magnitude in time and 5 orders of magnitude in space using optical and acoustic sensors. We explore the response of the system to slow transient loads and show that slow deformation episodes are systematically accompanied by acoustic emissions due to local fracture energy disorder. Features of acoustic emission activities and deformation rate distributions of our experimental system are similar to those in natural faults. On the basis of an activation energy model, we link our results to the Rate and State friction model and suggest an active role of local creep deformation in driving the seismic activity of earthquake swarms

    High density QCD with static quarks

    Get PDF
    We study lattice QCD in the limit that the quark mass and chemical potential are simultaneously made large, resulting in a controllable density of quarks which do not move. This is similar in spirit to the quenched approximation for zero density QCD. In this approximation we find that the deconfinement transition seen at zero density becomes a smooth crossover at any nonzero density, and that at low enough temperature chiral symmetry remains broken at all densities.Comment: LaTeX, 18 pages, uses epsf.sty, postscript figures include

    Influence of pore-scale disorder on viscous fingering during drainage

    Get PDF
    We study viscous fingering during drainage experiments in linear Hele-Shaw cells filled with a random porous medium. The central zone of the cell is found to be statistically more occupied than the average, and to have a lateral width of 40% of the system width, irrespectively of the capillary number CaCa. A crossover length wf∝Ca−1w_f \propto Ca^{-1} separates lower scales where the invader's fractal dimension D≃1.83D\simeq1.83 is identical to capillary fingering, and larger scales where the dimension is found to be D≃1.53D\simeq1.53. The lateral width and the large scale dimension are lower than the results for Diffusion Limited Aggregation, but can be explained in terms of Dielectric Breakdown Model. Indeed, we show that when averaging over the quenched disorder in capillary thresholds, an effective law v∝(∇P)2v\propto (\nabla P)^2 relates the average interface growth rate and the local pressure gradient.Comment: 4 pages, 4 figures, submitted to Phys Rev Letter

    Angular-dependence of magnetization switching for a multi-domain dot: experiment and simulation

    Full text link
    We have measured the in-plane angular variation of nucleation and annihilation fields of a multi-domain magnetic single dot with a microsquid. The dots are Fe/Mo(110) self-assembled in UHV, with sub-micron size and a hexagonal shape. The angular variations were quantitatively reproduced by micromagnetic simulations. Discontinuities in the variations are observed, and shown to result from bifurcations related to the interplay of the non-uniform magnetization state with the shape of the dot.Comment: 4 pages, 4 figures, for submission as a regular articl

    Persistence in One-dimensional Ising Models with Parallel Dynamics

    Full text link
    We study persistence in one-dimensional ferromagnetic and anti-ferromagnetic nearest-neighbor Ising models with parallel dynamics. The probability P(t) that a given spin has not flipped up to time t, when the system evolves from an initial random configuration, decays as P(t) \sim 1/t^theta_p with theta_p \simeq 0.75 numerically. A mapping to the dynamics of two decoupled A+A \to 0 models yields theta_p = 3/4 exactly. A finite size scaling analysis clarifies the nature of dynamical scaling in the distribution of persistent sites obtained under this dynamics.Comment: 5 pages Latex file, 3 postscript figures, to appear in Phys Rev.

    The roughness of stylolites: Implications of 3D high resolution topography measurements

    Get PDF
    Stylolites are natural pressure-dissolution surfaces in sedimentary rocks. We present 3D high resolution measurements at laboratory scales of their complex roughness. The topography is shown to be described by a self-affine scaling invariance. At large scales, the Hurst exponent is ζ1≈0.5\zeta_1 \approx 0.5 and very different from that at small scales where ζ2≈1.2\zeta_2 \approx 1.2. A cross-over length scale at around \L_c =1~mm is well characterized. Measurements are consistent with a Langevin equation that describes the growth of a stylolitic interface as a competition between stabilizing long range elastic interactions at large scales or local surface tension effects at small scales and a destabilizing quenched material disorder.Comment: 4 pages, 4 figure

    Average crack-front velocity during subcritical fracture propagation in a heterogeneous medium

    Get PDF
    We study the average velocity of crack fronts during stable interfacial fracture experiments in a heterogeneous quasibrittle material under constant loading rates and during long relaxation tests. The transparency of the material (polymethylmethacrylate) allows continuous tracking of the front position and relation of its evolution to the energy release rate. Despite significant velocity fluctuations at local scales, we show that a model of independent thermally activated sites successfully reproduces the large-scale behavior of the crack front for several loading conditions

    The A+B -> 0 annihilation reaction in a quenched random velocity field

    Full text link
    Using field-theoretic renormalization group methods the long-time behaviour of the A+B -> 0 annihilation reaction with equal initial densities n_A(0) = n_B(0) = n_0 in a quenched random velocity field is studied. At every point (x, y) of a d-dimensional system the velocity v is parallel or antiparallel to the x-axis and depends on the coordinates perpendicular to the flow. Assuming that v(y) have zero mean and short-range correlations in the y-direction we show that the densities decay asymptotically as n(t) ~ A n_0^(1/2) t^(-(d+3)/8) for d<3. The universal amplitude A is calculated at first order in \epsilon = 3-d.Comment: 19 pages, LaTeX using IOP-macros, 5 eps-figures. It is shown that the amplitude of the density is universal, i.e. independent of the reaction rat
    • 

    corecore