43,564 research outputs found

    Multipole Gravitational Lensing and High-order Perturbations on the Quadrupole Lens

    Full text link
    An arbitrary surface mass density of gravitational lens can be decomposed into multipole components. We simulate the ray-tracing for the multipolar mass distribution of generalized SIS (Singular Isothermal Sphere) model, based on the deflection angles which are analytically calculated. The magnification patterns in the source plane are then derived from inverse shooting technique. As have been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses such kind of overlapping caustics, the image numbers change by \pm 4, rather than \pm 2. There are two kinds of images for the caustics. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4 and 5 mode components, and found that one, two, and three butterfly or swallowtail singularities can be produced respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails contact, eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.Comment: 24 pages, 6 figure

    Massive and Red Objects predicted by a semianalytical model of galaxy formation

    Full text link
    We study whether hierarchical galaxy formation in a concordance Λ\LambdaCDM universe can produce enough massive and red galaxies compared to the observations. We implement a semi-analytical model in which the central black holes gain their mass during major mergers of galaxies and the energy feedback from active galaxy nuclei (AGN) suppresses the gas cooling in their host halos. The energy feedback from AGN acts effectively only in massive galaxies when supermassive black holes have been formed in the central bulges. Compared with previous models without black hole formation, our model predicts more massive and luminous galaxies at high redshift, agreeing with the observations of K20 up to z3z\sim 3. Also the predicted stellar mass density from massive galaxies agrees with the observations of GDDS. Because of the energy feedback from AGN, the formation of new stars is stopped in massive galaxies with the termination of gas cooling and these galaxies soon become red with color RK>R-K>5 (Vega magnitude), comparable to the Extremely Red Objects (EROs) observed at redshift zz\sim1-2. Still the predicted number density of very EROs is lower than observed at z2z\sim 2, and it may be related to inadequate descriptions of dust extinction, star formation history and AGN feedback in those luminous galaxies.Comment: Accepted for Publication in ApJ, added reference

    Is the Number of Giant Arcs in LCDM Consistent With Observations?

    Full text link
    We use high-resolution N-body simulations to study the galaxy-cluster cross-sections and the abundance of giant arcs in the Λ\LambdaCDM model. Clusters are selected from the simulations using the friends-of-friends method, and their cross-sections for forming giant arcs are analyzed. The background sources are assumed to follow a uniform ellipticity distribution from 0 to 0.5 and to have an area identical to a circular source with diameter 1\arcsec. We find that the optical depth scales as the source redshift approximately as \tau_{1''} = 2.25 \times 10^{-6}/[1+(\zs/3.14)^{-3.42}] (0.6<\zs<7). The amplitude is about 50% higher for an effective source diameter of 0.5\arcsec. The optimal lens redshift for giant arcs with the length-to-width ratio (L/WL/W) larger than 10 increases from 0.3 for \zs=1, to 0.5 for \zs=2, and to 0.7-0.8 for \zs>3. The optical depth is sensitive to the source redshift, in qualitative agreement with Wambsganss et al. (2004). However, our overall optical depth appears to be only \sim 10% to 70% of those from previous studies. The differences can be mostly explained by different power spectrum normalizations (σ8\sigma_8) used and different ways of determining the L/WL/W ratio. Finite source size and ellipticity have modest effects on the optical depth. We also found that the number of highly magnified (with magnification μ>10|\mu|>10) and ``undistorted'' images (with L/W<3L/W<3) is comparable to the number of giant arcs with μ>10|\mu|>10 and L/W>10L/W>10. We conclude that our predicted rate of giant arcs may be lower than the observed rate, although the precise `discrepancy' is still unclear due to uncertainties both in theory and observations.Comment: Revised version after the referee's reports (32 pages,13figures). The paper has been significantly revised with many additions. The new version includes more detailed comparisons with previous studies, including the effects of source size and ellipticity. New discussions about the redshift distribution of lensing clusters and the width of giant arcs have been adde

    Origins of the Isospin Violation of Dark Matter Interactions

    Full text link
    Light dark matter (DM) with a large DM-nucleon spin-independent cross section and furthermore proper isospin violation (ISV) fn/fp0.7f_n/f_p\approx-0.7 may provide a way to understand the confusing DM direct detection results. Combing with the stringent astrophysical and collider constraints, we systematically investigate the origin of ISV first via general operator analyses and further via specifying three kinds of (single) mediators: A light ZZ' from chiral U(1)XU(1)_X, an approximate spectator Higgs doublet (It can explain the W+jjW+jj anomaly simultaneously) and color triplets. In addition, although ZZ' from an exotic U(1)XU(1)_X mixing with U(1)YU(1)_Y generating fn=0f_n=0, we can combine it with the conventional Higgs to achieve proper ISV. As a concrete example, we propose the U(1)XU(1)_X model where the U(1)XU(1)_X charged light sneutrino is the inelastic DM, which dominantly annihilates to light dark states such as ZZ' with sub-GeV mass. This model can address the recent GoGeNT annual modulation consistent with other DM direct detection results and free of exclusions.Comment: References added and English greatly improve

    Spin Fluctuation and Persistent Current in a Mesoscopic Ring Coupled to a Quantum Dot

    Full text link
    We investigate the persistent current influenced by the spin fluctuations in a mesoscopic ring weakly coupled to a quantum dot. It is shown that the Kondo effect gives rise to some unusual features of the persistent current in the limit where the charge transfer between two subsystems is suppressed. Various aspects of the crossover from a delocalized to a localized dot limit are discussed in relation with the effect of the coherent response of the Kondo cloud to the Aharonov-Bohm flux.Comment: 4 pages, 2 figure

    Modelling spatially regulated B-catenin dynamics & invasion in intestinal crypts

    Get PDF
    Experimental data (e.g., genetic lineage and cell population studies) on intestinal crypts reveal that regulatory features of crypt behavior, such as control via morphogen gradients, are remarkably well conserved among numerous organisms (e.g., from mouse and rat to human) and throughout the different regions of the small and large intestines. In this article, we construct a partial differential equation model of a single colonic crypt that describes the spatial distribution of Wnt pathway proteins along the crypt axis. The novelty of our continuum model is that it is based upon assumptions that can be directly related to processes at the cellular and subcellular scales. We use the model to predict how the distributions of Wnt pathway proteins are affected by mutations. The model is then extended to investigate how mutant cell populations can invade neighboring crypts. The model simulations suggest that cell crowding caused by increased proliferation and decreased cell loss may be sufficient for a mutant cell population to colonize a neighboring healthy crypt

    Kinetic pathways of the Nematic-Isotropic phase transition as studied by confocal microscopy on rod-like viruses

    Get PDF
    We investigate the kinetics of phase separation for a mixture of rodlike viruses (fd) and polymer (dextran), which effectively constitutes a system of attractive rods. This dispersion is quenched from a flow-induced fully nematic state into the region where the nematic and the isotropic phase coexist. We show experimental evidence that the kinetic pathway depends on the overall concentration. When the quench is made at high concentrations, the system is meta-stable and we observe typical nucleation-and-growth. For quenches at low concentration the system is unstable and the system undergoes a spinodal decomposition. At intermediate concentrations we see the transition between both demixing processes, where we locate the spinodal point.Comment: 11 pages, 6 figures, accepted in J. Phys.: Condens. Matter as symposium paper for the 6th Liquid Matter Conference in Utrech

    Reaction-diffusion with a time-dependent reaction rate: the single-species diffusion-annihilation process

    Full text link
    We study the single-species diffusion-annihilation process with a time-dependent reaction rate, lambda(t)=lambda_0 t^-omega. Scaling arguments show that there is a critical value of the decay exponent omega_c(d) separating a reaction-limited regime for omega > omega_c from a diffusion-limited regime for omega < omega_c. The particle density displays a mean-field, omega-dependent, decay when the process is reaction limited whereas it behaves as for a constant reaction rate when the process is diffusion limited. These results are confirmed by Monte Carlo simulations. They allow us to discuss the scaling behaviour of coupled diffusion-annihilation processes in terms of effective time-dependent reaction rates.Comment: 11 pages, 9 figures, minor correction

    Neutrino Background Flux from Sources of Ultrahigh-Energy Cosmic-Ray Nuclei

    Get PDF
    Motivated by Pierre Auger Observatory results favoring a heavy nuclear composition for ultrahigh-energy (UHE) cosmic rays, we investigate implications for the cumulative neutrino background. The requirement that nuclei not be photodisintegrated constrains their interactions in sources, therefore limiting neutrino production via photomeson interactions. Assuming a dNCR/dECRECR2dN_{\rm CR}/dE_{\rm CR} \propto E_{\rm CR}^{-2} injection spectrum and photodisintegration via the giant dipole resonance, the background flux of neutrinos is lower than Eν2Φν109GeVcm2s1sr1E_\nu^2 \Phi_\nu \sim {10}^{-9} {\rm GeV} {\rm cm}^{-2} {\rm s}^{-1} {\rm sr}^{-1} if UHE nuclei ubiquitously survive in their sources. This is smaller than the analogous Waxman-Bahcall flux for UHE protons by about one order of magnitude, and is below the projected IceCube sensitivity. If IceCube detects a neutrino background, it could be due to other sources, e.g., hadronuclear interactions of lower-energy cosmic rays; if it does not, this supports our strong restrictions on the properties of sources of UHE nuclei.Comment: 7 pages, 3 figure

    Verification and Control of Partially Observable Probabilistic Real-Time Systems

    Full text link
    We propose automated techniques for the verification and control of probabilistic real-time systems that are only partially observable. To formally model such systems, we define an extension of probabilistic timed automata in which local states are partially visible to an observer or controller. We give a probabilistic temporal logic that can express a range of quantitative properties of these models, relating to the probability of an event's occurrence or the expected value of a reward measure. We then propose techniques to either verify that such a property holds or to synthesise a controller for the model which makes it true. Our approach is based on an integer discretisation of the model's dense-time behaviour and a grid-based abstraction of the uncountable belief space induced by partial observability. The latter is necessarily approximate since the underlying problem is undecidable, however we show how both lower and upper bounds on numerical results can be generated. We illustrate the effectiveness of the approach by implementing it in the PRISM model checker and applying it to several case studies, from the domains of computer security and task scheduling
    corecore