22,553 research outputs found
Self-shadowing Effects of Slim Accretion Disks in Active Galactic Nuclei: Diverse Appearance of the Broad-line Region
Supermassive black holes in active galactic nuclei (AGNs) undergo a wide
range of accretion rates, which lead to diversity of appearance. We consider
the effects of anisotropic radiation from accretion disks on the broad-line
region (BLR), from the Shakura-Sunyaev regime to slim disks with
super-Eddington accretion rates. The geometrically thick funnel of the inner
region of slim disks produces strong self-shadowing effects that lead to very
strong anisotropy of the radiation field. We demonstrate that the degree of
anisotropy of the radiation fields grows with increasing accretion rate. As a
result of this anisotropy, BLR clouds receive different spectral energy
distributions depending on their location relative to the disk, resulting in
diverse observational appearance of the BLR. We show that the self-shadowing of
the inner parts of the disk naturally produces two dynamically distinct regions
of the BLR, depending on accretion rate. These two regions manifest themselves
as kinematically distinct components of the broad H line profile with
different line widths and fluxes, which jointly account for the Lorentzian
profile generally observed in narrow-line Seyfert 1 galaxies. In the time
domain, these two components are expected reverberate with different time lags
with respect to the varying ionizing continuum, depending on the accretion rate
and the viewing angle of the observer. The diverse appearance of the BLR due to
the anisotropic ionizing energy source can be tested by reverberation mapping
of H and other broad emission lines (e.g., \feii), providing a new tool
to diagnose the structure and dynamics of the BLR. Other observational
consequences of our model are also explored.Comment: emulatapj style, 15 pages, 6 figures, in pres
k_T factorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions
We show that hard-scattering factorization is violated in the production of
high-p_T hadrons in hadron-hadron collisions, in the case that the hadrons are
back-to-back, so that k_T factorization is to be used. The explicit
counterexample that we construct is for the single-spin asymmetry with one beam
transversely polarized. The Sivers function needed here has particular
sensitivity to the Wilson lines in the parton densities. We use a greatly
simplified model theory to make the breakdown of factorization easy to check
explicitly. But the counterexample implies that standard arguments for
factorization fail not just for the single-spin asymmetry but for the
unpolarized cross section for back-to-back hadron production in QCD in
hadron-hadron collisions. This is unlike corresponding cases in e^+e^-
annihilation, Drell-Yan, and deeply inelastic scattering. Moreover, the result
endangers factorization for more general hadroproduction processes.Comment: 10 pages. V. 2: Title change, misprints and minor corrections, as in
journal versio
Polymeric forms of carbon in dense lithium carbide
The immense interest in carbon nanomaterials continues to stimulate intense
research activities aimed to realize carbon nanowires, since linear chains of
carbon atoms are expected to display novel and technologically relevant
optical, electrical and mechanical properties. Although various allotropes of
carbon (e.g., diamond, nanotubes, graphene, etc.) are among the best known
materials, it remains challenging to stabilize carbon in the one-dimensional
form because of the difficulty to suitably saturate the dangling bonds of
carbon. Here, we show through first-principles calculations that ordered
polymeric carbon chains can be stabilized in solid LiC under moderate
pressure. This pressure-induced phase (above 5 GPa) consists of parallel arrays
of twofold zigzag carbon chains embedded in lithium cages, which display a
metallic character due to the formation of partially occupied carbon lone-pair
states in \emph{sp}-like hybrids. It is found that this phase remains the
most favorable one in a wide range of pressure. At extreme pressure (larger the
215 GPa) a structural and electronic phase transition towards an insulating
single-bonded threefold-coordinated carbon network is predicted.Comment: 10 pages, 6 figure
Role of the nonperturbative input in QCD resummed Drell-Yan -distributions
We analyze the role of the nonperturbative input in the Collins, Soper, and
Sterman (CSS)'s -space QCD resummation formalism for Drell-Yan transverse
momentum () distributions, and investigate the predictive power of the CSS
formalism. We find that the predictive power of the CSS formalism has a strong
dependence on the collision energy in addition to its well-known
dependence, and the dependence improves the predictive power
at collider energies. We show that a reliable extrapolation from perturbatively
resummed -space distributions to the nonperturbative large region is
necessary to ensure the correct distributions. By adding power
corrections to the renormalization group equations in the CSS formalism, we
derive a new extrapolation formalism. We demonstrate that at collider energies,
the CSS resummation formalism plus our extrapolation has an excellent
predictive power for and production at all transverse momenta . We also show that the -space resummed distributions provide a good
description of Drell-Yan data at fixed target energies.Comment: Latex, 43 pages including 15 figures; typos were correcte
Ground state properties of one-dimensional Bose-Fermi mixtures
Bose-Fermi mixtures in one dimension are studied in detail on the basis of an
exact solution. Corresponding to three possible choices of the referecce state
in the quantum inverse scattering method, three sets of Bethe-ansatz equations
are derived explicitly. The features of the ground state and low-lying
excitations are investigated. The ground state phase diagram caused by the
external field and chemical potential is obtained
Neutron scattering from a coordination polymer quantum paramagnet
Inelastic neutron scattering measurements are reported for a powder sample of
the spin-1/2 quantum paramagnet . Magnetic neutron
scattering is identified above an energy gap of 1.9 meV. Analysis of the sharp
spectral maximum at the onset indicates that the material is magnetically
quasi-one-dimensional. Consideration of the wave vector dependence of the
scattering and polymeric structure further identifies the material as a
two-legged spin-1/2 ladder. Detailed comparison of the data to various models
of magnetism in this material based on the single mode approximation and the
continuous unitary transformation are presented. The latter theory provides an
excellent account of the data with leg exchange meV and
rung exchange meV.Comment: 10 pages, 11 figures, 1 tabl
- …