57 research outputs found

    Tolerability of intensified intravenous interferon alfa-2b versus the ECOG 1684 schedule as adjuvant therapy for stage III melanoma: a randomized phase III Italian Melanoma Inter-group trial (IMI – Mel.A.) [ISRCTN75125874]

    Get PDF
    BACKGROUND: High-dose interferon alfa-2b (IFNalfa-2b), according to the ECOG 1684 schedule, is the only approved adjuvant treatment for stage III melanoma patients by the FDA and EMEA. However, the risk/benefit profile has been questioned limiting its world-wide use. In the late nineties, the Italian Melanoma Inter-group started a spontaneous randomized clinical trial (RCT) to verify if a more intense, but shorter than the ECOG 1684 regimen, could improve survival without increasing the toxicity profile. The safety analysis in the first 169 patients who completed the treatment is here described. METHODS: Stage III melanoma patients were randomized to receive IFNalfa-2b 20 MU/m(2)/d intravenously (IV) 5 days/week × 4 weeks, repeated for three times on weeks 9 to 12, 17 to 20, 25 to 28 (Dose-Dense/Dose-Intense, DD/DI, arm), or IFNalfa-2b 20 MU/m(2)/d IV 5 days/week × 4 weeks followed by 10 MU/m(2 )subcutaneously (SC) three times per week × 48 weeks (High Dose Interferon, HDI, arm). Toxicity was recorded and graded, according to the WHO criteria, as the worst grade that occurred during each cycle. RESULTS: The most common toxicities in both arms were flu-like and gastrointestinal symptoms, leukopenia, liver and neuro-psichiatric morbidities; with regard to severe toxicity, only leukopenia was statistically more frequent in DD/DI arm than in HDI arm (24% vs 9%) (p = 0.0074), yet, this did not cause an increase in the infection risk. Discontinuation of treatment, due to toxicity, was observed in 13 and 17% of the patients in the DD/DI and HDI arm, respectively. The median actual dose intensity delivered in the DD/DI arm (36.4 MU/m(2)/week) was statistically higher than that delivered in the HDI arm (30.7 MU/m(2)/week) (p = 0.003). CONCLUSION: Four cycles of intravenous high-dose IFNalfa-2b can be safely delivered with an increase in the median dose intensity. Efficacy results from this trial are eagerly awaited

    Analysis of Bovine Viral Diarrhea Viruses-infected monocytes: identification of cytopathic and non-cytopathic biotype differences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bovine Viral Diarrhea Virus (BVDV) infection is widespread in cattle worldwide, causing important economic losses. Pathogenesis of the disease caused by BVDV is complex, as each BVDV strain has two biotypes: non-cytopathic (ncp) and cytopathic (cp). BVDV can cause a persistent latent infection and immune suppression if animals are infected with an ncp biotype during early gestation, followed by a subsequent infection of the cp biotype. The molecular mechanisms that underscore the complex disease etiology leading to immune suppression in cattle caused by BVDV are not well understood.</p> <p>Results</p> <p>Using proteomics, we evaluated the effect of cp and ncp BVDV infection of bovine monocytes to determine their role in viral immune suppression and uncontrolled inflammation. Proteins were isolated by differential detergent fractionation and identified by 2D-LC ESI MS/MS. We identified 137 and 228 significantly altered bovine proteins due to ncp and cp BVDV infection, respectively. Functional analysis of these proteins using the Gene Ontology (GO) showed multiple under- and over- represented GO functions in molecular function, biological process and cellular component between the two BVDV biotypes. Analysis of the top immunological pathways affected by BVDV infection revealed that pathways representing macropinocytosis signalling, virus entry via endocytic pathway, integrin signalling and primary immunodeficiency signalling were identified only in ncp BVDV-infected monocytes. In contrast, pathways like actin cytoskeleton signalling, RhoA signalling, clathrin-mediated endocytosis signalling and interferon signalling were identified only in cp BDVD-infected cells. Of the six common pathways involved in cp and ncp BVDV infection, acute phase response signalling was the most significant for both BVDV biotypes. Although, most shared altered host proteins between both BVDV biotypes showed the same type of change, integrin alpha 2b (ITGA2B) and integrin beta 3 (ITGB3) were down- regulated by ncp BVDV and up- regulated by cp BVDV infection.</p> <p>Conclusions</p> <p>This study shows that, as we expected, there are significant functional differences in the host proteins that respond to cp or ncp BVDV infection. The combined use of GO and systems biology network modelling facilitated a better understanding of host-pathogen interactions.</p

    Two Major Autoantibody Clusters in Systemic Lupus Erythematosus

    Get PDF
    Systemic lupus erythematosus is a chronic autoimmune disease of complex clinical presentation and etiology and is likely influenced by numerous genetic and environmental factors. While a large number of susceptibility genes have been identified, the production of antibodies against a distinct subset of nuclear proteins remains a primary distinguishing characteristic in disease diagnosis. However, the utility of autoantibody biomarkers for disease sub-classification and grouping remains elusive, in part, because of the difficulty in large scale profiling using a uniform, quantitative platform. In the present study serological profiles of several known SLE antigens, including Sm-D3, RNP-A, RNP-70k, Ro52, Ro60, and La, as well as other cytokine and neuronal antigens were obtained using the luciferase immunoprecipitation systems (LIPS) approach. The resulting autoantibody profiles revealed that 88% of a pilot cohort and 98% of a second independent cohort segregated into one of two distinct clusters defined by autoantibodies against Sm/anti-RNP or Ro/La autoantigens, proteins often involved in RNA binding activities. The Sm/RNP cluster was associated with a higher prevalence of serositis in comparison to the Ro/La cluster (P = 0.0022). However, from the available clinical information, no other clinical characteristics were associated with either cluster. In contrast, evaluation of autoantibodies on an individual basis revealed an association between anti-Sm (P = 0.006), RNP-A (P = 0.018) and RNP-70k (P = 0.010) autoantibodies and mucocutaneous symptoms and between anti-RNP-70k and musculoskeletal manifestations (P = 0.059). Serologically active, but clinically quiescent disease also had a higher prevalence of anti-IFN-α autoantibodies. Based on our findings that most SLE patients belong to either a Sm/RNP or Ro/La autoantigen cluster, these results suggest the possibility that alterations in RNA-RNA-binding protein interactions may play a critical role in triggering and/or the pathogenesis of SLE

    Different physiology of interferon-α/-γ in models of liver regeneration in the rat

    Get PDF
    Liver regeneration may take place after liver injury through replication of hepatocytes or hepatic progenitor cells called oval cells. Interferons (IFN) are natural cytokines with pleiotrophic effects including antiviral and antiproliferative actions. No data are yet available on the physiology and cellular source of natural IFNs during liver regeneration. To address this issue, we have analyzed the levels and biologic activities of IFN-α/IFN-γ in two models of partial hepatectomy. After 2/3rd partial hepatectomy (PH), hepatic levels of IFN-α and IFN-γ declined transiently in contrast to a transient increase of the IFN-γ serum level. After administration of 2-acetylaminofluorene and partial hepatectomy (AAF/PH model), however, both IFN-α and IFN-γ expression were up-regulated in regenerating livers. Again, the IFN-γ serum level was transiently increased. Whereas hepatic IFN-γ was up-regulated early (day 1–5), but not significantly, in the AAF/PH model, IFN-α was significantly up-regulated at later time points in parallel to the peak of oval cell proliferation (days 7–9). Biological activity of IFN-α was shown by activation of IFN-α-specific signal transduction and induction of IFN-α specific-gene expression. We found a significant infiltration of the liver with inflammatory monocyte-like mononuclear phagocytes (MNP) concomitant to the frequency of oval cells. We localized IFN-α production only in MNPs, but not in oval cells. These events were not observed in normal liver regeneration after standard PH. We conclude that IFN-γ functions as an acute-phase cytokine in both models of liver regeneration and may constitute a systemic component of liver regeneration. IFN-α was increased only in the AAF/PH model, and was associated with proliferation of oval cells. However, oval cells seem not to be the source of IFN-α. Instead, inflammatory MNP infiltrating AAF/PH-treated livers produce IFN-α. These inflammatory MNPs may be involved in the regulation of the oval cell compartment through local expression of cytokines, including IFN-α

    Major Depletion of Plasmacytoid Dendritic Cells in HIV-2 Infection, an Attenuated Form of HIV Disease

    Get PDF
    Plasmacytoid dendritic cells (pDC) provide an important link between innate and acquired immunity, mediating their action mainly through IFN-α production. pDC suppress HIV-1 replication, but there is increasing evidence suggesting they may also contribute to the increased levels of cell apoptosis and pan-immune activation associated with disease progression. Although having the same clinical spectrum, HIV-2 infection is characterized by a strikingly lower viremia and a much slower rate of CD4 decline and AIDS progression than HIV-1, irrespective of disease stage. We report here a similar marked reduction in circulating pDC levels in untreated HIV-1 and HIV-2 infections in association with CD4 depletion and T cell activation, in spite of the undetectable viremia found in the majority of HIV-2 patients. Moreover, the same overexpression of CD86 and PD-L1 on circulating pDC was found in both infections irrespective of disease stage or viremia status. Our observation that pDC depletion occurs in HIV-2 infected patients with undetectable viremia indicates that mechanisms other than direct viral infection determine the pDC depletion during persistent infections. However, viremia was associated with an impairment of IFN-α production on a per pDC basis upon TLR9 stimulation. These data support the possibility that diminished function in vitro may relate to prior activation by HIV virions in vivo, in agreement with our finding of higher expression levels of the IFN-α inducible gene, MxA, in HIV-1 than in HIV-2 individuals. Importantly, serum IFN-α levels were not elevated in HIV-2 infected individuals. In conclusion, our data in this unique natural model of “attenuated” HIV immunodeficiency contribute to the understanding of pDC biology in HIV/AIDS pathogenesis, showing that in the absence of detectable viremia a major depletion of circulating pDC in association with a relatively preserved IFN-α production does occur

    Epitopes recognized by neutralizing therapy-induced human anti-interferon-alpha antibodies are localized within the N-terminal functional domain of recombinant interferon-alpha2

    No full text
    During prolonged recombinant interferon (rIFN)-alpha2 therapy, a minority of patients develop high-titer neutralizing IFN-alpha antibodies. Sera from nine IFN-alpha antibody-positive patients were studied to characterize the specificity of anti-IFN-alpha neutralizing antibodies by their ability to inhibit the anitviral and antiproliferative activity of differnet rIFN-alpha subtypes and rIFN-alpha1/alpha2 hybrids. These therapy-induced antibodies (TaB) were compared with IFN-alpha-specific autoantibodies (Aab) from two patients with systemic lupus erythematosus who had never received any exogenous IFN-alpha. Although IFN-alpha subtypes are closely related in structure, Tab inhibited the antiviral activity of only recombinant (r)IFN-alpha2 and rIFN-alpha6, but not or slightly that of rIFN-alpha1, -alpha7,-alpha9 and alpha14. Furthermore, of four different rIFN-alpha1/alpha2 hybrids tested, Tab inhibited only those which contained the N-terminal residues 17-64 of rIFN-alpha2
    corecore