52 research outputs found

    Dual-regulated lentiviral vector for gene therapy of X-linked chronic granulomatosis

    Get PDF
    Regulated transgene expression may improve the safety and efficacy of hematopoietic stem cell (HSC) gene therapy. Clinical trials for X-linked chronic granulomatous disease (X-CGD) employing gammaretroviral vectors were limited by insertional oncogenesis or lack of persistent engraftment. Our novel strategy, based on regulated lentiviral vectors (LV), targets gp91(phox) expression to the differentiated myeloid compartment while sparing HSC, to reduce the risk of genotoxicity and potential perturbation of reactive oxygen species levels. Targeting was obtained by a myeloid-specific promoter (MSP) and posttranscriptional, microRNA-mediated regulation. We optimized both components in human bone marrow (BM) HSC and their differentiated progeny in vitro and in a xenotransplantation model, and generated therapeutic gp91(phox) expressing LVs for CGD gene therapy. All vectors restored gp91(phox) expression and function in human X-CGD myeloid cell lines, primary monocytes, and differentiated myeloid cells. While unregulated LVs ectopically expressed gp91(phox) in CD34(+) cells, transcriptionally and posttranscriptionally regulated LVs substantially reduced this off-target expression. X-CGD mice transplanted with transduced HSC restored gp91(phox) expression, and MSP-driven vectors maintained regulation during BM development. Combining transcriptional (SP146.gp91-driven) and posttranscriptional (miR-126-restricted) targeting, we achieved high levels of myeloid-specific transgene expression, entirely sparing the CD34(+) HSC compartment. This dual-targeted LV construct represents a promising candidate for further clinical development

    Potent and selective aldo-keto reductase 1C3 (AKR1C3) inhibitors based on the benzoisoxazole moiety: application of a bioisosteric scaffold hopping approach to flufenamic acid

    Get PDF
    YesThe aldo-keto reductase 1C3 (AKR1C3) isoform plays a vital role in the biosynthesis of androgens and is considered an attractive target in prostate cancer (PCa). No AKR1C3-targeted agent has to date been approved for clinical use. Flufenamic acid and indomethacine are non-steroidal anti-inflammatory drugs known to inhibit AKR1C3 in a non-selective manner as COX off-target effects are also observed. Recently, we employed a scaffold hopping approach to design a new class of potent and selective AKR1C3 inhibitors based on a N-substituted hydroxylated triazole pharmacophore. Following a similar strategy, we designed a new series focused around an acidic hydroxybenzoisoxazole moiety, which was rationalised to mimic the benzoic acid role in the flufenamic scaffold. Through iterative rounds of drug design, synthesis and biological evaluation, several compounds were discovered to target AKR1C3 in a selective manner. The most promising compound of series (6) was found to be highly selective (up to 450-fold) for AKR1C3 over the 1C2 isoform with minimal COX1 and COX2 off-target effects. Other inhibitors were obtained modulating the best example of hydroxylated triazoles we previously presented. In cell-based assays, the most promising compounds of both series reduced the cell proliferation, prostate specific antigen (PSA) and testosterone production in AKR1C3-expressing 22RV1 prostate cancer cells and showed synergistic effect when assayed in combination with abiraterone and enzalutamide. Structure determination of AKR1C3 co-crystallized with one representative compound from each of the two series clearly identified both compounds in the androstenedione binding site, hence supporting the biochemical data.University of Turin (Ricerca Locale grant 2015-2017) and Prostate Cancer UK grant S12-027

    Endothelial Differentiation of Human Stem Cells Seeded onto Electrospun Polyhydroxybutyrate/Polyhydroxybutyrate-Co-Hydroxyvalerate Fiber Mesh

    Get PDF
    Tissue engineering is based on the association of cultured cells with structural matrices and the incorporation of signaling molecules for inducing tissue regeneration. Despite its enormous potential, tissue engineering faces a major challenge concerning the maintenance of cell viability after the implantation of the constructs. The lack of a functional vasculature within the implant compromises the delivery of nutrients to and removal of metabolites from the cells, which can lead to implant failure. In this sense, our investigation aims to develop a new strategy for enhancing vascularization in tissue engineering constructs. This study's aim was to establish a culture of human adipose tissue-derived stem cells (hASCs) to evaluate the biocompatibility of electrospun fiber mesh made of polyhydroxybutyrate (PHB) and its copolymer poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHB-HV) and to promote the differentiation of hASCs into the endothelial lineage. Fiber mesh was produced by blending 30% PHB with 70% PHB-HV and its physical characterization was conducted using scanning electron microscopy analysis (SEM). Using electrospinning, fiber mesh was obtained with diameters ranging 300 nm to 1.3 µm. To assess the biological performance, hASCs were extracted, cultured, characterized by flow cytometry, expanded and seeded onto electrospun PHB/PHB-HV fiber mesh. Various aspects of the cells were analyzed in vitro using SEM, MTT assay and Calcein-AM staining. The in vitro evaluation demonstrated good adhesion and a normal morphology of the hASCs. After 7, 14 and 21 days of seeding hASCs onto electrospun PHB/PHB-HV fiber mesh, the cells remained viable and proliferative. Moreover, when cultured with endothelial differentiation medium (i.e., medium containing VEGF and bFGF), the hASCs expressed endothelial markers such as VE-Cadherin and the vWF factor. Therefore, the electrospun PHB/PHB-HV fiber mesh appears to be a suitable material that can be used in combination with endothelial-differentiated cells to improve vascularization in engineered bone tissues

    Targeting microRNAs as key modulators of tumor immune response

    Full text link

    Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging

    No full text
    INTRODUCTION: Diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI) and MR spectroscopy (MRS) provide useful data for tumor evaluation. To assess the contribution of these multimodal techniques in grading glial neoplasms, we compared the value of DWI, PWI and MRS in the evaluation of histologically proven high- and low-grade gliomas in a population of 105 patients. METHODS: Independently for each modality, the following variables were used to compare the tumors: minimum apparent diffusion coefficient (ADC) and maximum relative cerebral blood volume (rCBV) normalized values between tumor and healthy tissue, maximum Cho/Cr ratio and minimum NAA/Cr ratio in tumor, and scored lactate and lipid values in tumor. The Mann-Whitney and Wilcoxon tests were employed to compare DWI, PWI and MRS between tumor types. Logistic regression analysis was used to determine which parameters best increased the diagnostic accuracy in terms of sensitivity, specificity, and positive and negative predictive values. ROC curves were determined for parameters with high sensitivity and specificity to identify threshold values to separate high- from low-grade lesions. RESULTS: Statistically significant differences were found for rCBV tumor/normal tissue ratio, and NAA/Cr ratio in tumor and Cho/Cr ratio in tumor between low- and high-grade tumors. The best performing single parameter for group classification was the normalized rCBV value; including all parameters, statistical significance was reached by rCBV tumor/normal tissue ratio, NAA/Cr tumor ratio and lactate. From the ROC curves, a high probability for a neoplasm to be a high-grade lesion was associated with a rCBV tumor/normal tissue ratio of >1.16 and NAA/Cr tumor ratio of <0.44. CONCLUSION: Combining PWI and MRS with conventional MR imaging increases the accuracy of the attribution of malignancy to glial neoplasms. The best performing parameter was found to be the perfusion level

    A direct link between expression of urokinase plasminogen activator receptor, growth rate and oncogenic transformation in mouse embryonic fibroblasts

    No full text
    In addition to its role in invasion and metastasis of several tumors, the multifunctional urokinase receptor uPAR (urokinase plasminogen activator receptor) is directly involved in the growth of several cancer cells in vitro and in vivo. We have compared growth rate and oncogenic transformation in wild-type (wt) or uPAR-/- mouse embryonic fibroblasts (MEFs). Surprisingly, uPAR-/- MEFs grew faster than wt MEFs. This agreed with elevated levels of cell cycle mediators like extracellular signal-regulated protein kinase, p38, AP1 and Cyclin D1. Infection with a uPAR retrovirus reverted the effect, decreasing the growth rate.When MEFs were transformed with H-RasV12 and E1A oncogenes, the efficiency of transformation in uPAR-/- MEFs was higher than in wt. UPAR-/- MEFs grew faster at low serum, produced more colonies in agar and produced tumors in vivo in nude mice with a lower latency period. The properties of the heterozygous uPAR+/- MEFs were always intermediate. We conclude therefore that in MEFs uPAR concentration controls cell proliferation and the transforming activity of some oncogenes
    • …
    corecore