22 research outputs found

    Pharmacological and cell-specific genetic PI3Kα inhibition worsens cardiac remodeling after myocardial infarction

    Get PDF
    BACKGROUND: PI3Kα (Phosphoinositide 3-kinase α) regulates multiple downstream signaling pathways controlling cell survival, growth, and proliferation and is an attractive therapeutic target in cancer and obesity. The clinically-approved PI3Kα inhibitor, BYL719, is in further clinical trials for cancer and overgrowth syndrome. However, the potential impact of PI3Kα inhibition on the heart and following myocardial infarction (MI) is unclear. We aim to determine whether PI3Kα inhibition affects cardiac physiology and post-MI remodeling and to elucidate the underlying molecular mechanisms. METHODS AND RESULTS: Wildtype (WT) 12-wk old male mice receiving BYL719 (daily, p.o.) for 10 days showed reduction in left ventricular longitudinal strain with normal ejection fraction, weight loss, mild cardiac atrophy, body composition alteration, and prolonged QTC interval. RNASeq analysis showed gene expression changes in multiple pathways including extracellular matrix remodeling and signaling complexes. After MI, both p110α and phospho-Akt protein levels were increased in human and mouse hearts. Pharmacological PI3Kα inhibition aggravated cardiac dysfunction and resulted in adverse post-MI remodeling, with increased apoptosis, elevated inflammation, suppressed hypertrophy, decreased coronary blood vessel density, and inhibited Akt/GSK3β/eNOS signaling. Selective genetic ablation of PI3Kα in endothelial cells was associated with worsened post-MI cardiac function and reduced coronary blood vessel density. In vitro, BYL719 suppressed Akt/eNOS activation, cell viability, proliferation, and angiogenic sprouting in coronary and human umbilical vein endothelial cells. Cardiomyocyte-specific genetic PI3Kα ablation resulted in mild cardiac systolic dysfunction at baseline. After MI, cardiac function markedly deteriorated with increased mortality concordant with greater apoptosis and reduced hypertrophy. In isolated adult mouse cardiomyocytes, BYL719 decreased hypoxia-associated activation of Akt/GSK3β signaling and cell survival. CONCLUSIONS: PI3Kα is required for cell survival (endothelial cells and cardiomyocytes) hypertrophic response, and angiogenesis to maintain cardiac function after MI. Therefore, PI3Kα inhibition that is used as anti-cancer treatment, can be cardiotoxic, especially after MI

    Endothelial and cardiomyocyte PI3Kβ divergently regulate cardiac remodelling in response to ischaemic injury

    Get PDF
    AIMS: Cardiac remodeling in the ischemic heart determines prognosis in patients with ischemic heart disease (IHD), while enhancement of angiogenesis and cell survival has shown great potential for IHD despite translational challenges. Phosphoinositide 3-kinase (PI3K)/Akt signaling pathway plays a critical role in promoting angiogenesis and cell survival. However, the effect of PI3Kβ in the ischemic heart is poorly understood. This study investigates the role of endothelial and cardiomyocyte PI3Kβ in post-infarct cardiac remodeling. METHODS AND RESEARCH: PI3Kβ catalytic subunit-p110β level was increased in infarcted murine and human hearts. Using cell type-specific loss-of-function approaches, we reported novel and distinct actions of p110β in endothelial cells versus cardiomyocytes in response to myocardial ischemic injury. Inactivation of endothelial p110β resulted in marked resistance to infarction and adverse cardiac remodeling with decreased mortality, improved systolic function, preserved microvasculature, and enhanced Akt activation. Cultured endothelial cells with p110β knockout or inhibition displayed preferential PI3Kα/Akt/eNOS signaling that consequently promoted protective signaling and angiogenesis. In contrast, mice with cardiomyocyte p110β-deficiency exhibited adverse post-infarct ventricular remodeling with larger infarct size and deteriorated cardiac function, which was due to enhanced susceptibility of cardiomyocytes to ischemia-mediated cell death. Disruption of cardiomyocyte p110β signaling compromised nuclear p110β and phospho-Akt levels leading to perturbed gene expression and elevated pro-cell death protein levels, increasing the susceptibility to cardiomyocyte death. A similar divergent response of PI3Kβ endothelial and cardiomyocyte mutant mice was seen using a model of myocardial ischemia-reperfusion injury. CONCLUSIONS: These data demonstrate novel, differential, and cell-specific functions of PI3Kβ in the ischemic heart. While loss of endothelial PI3Kβ activity produces cardioprotective effects, cardiomyocyte PI3Kβ is protective against myocardial ischemic injury

    PI3Kα Pathway Inhibition With Doxorubicin Treatment Results in Distinct Biventricular Atrophy and Remodeling With Right Ventricular Dysfunction

    Get PDF
    Background-—Cancer therapies inhibiting PI3Ka (phosphoinositide 3-kinase-a)–dependent growth factor signaling, including trastuzumab inhibition of HER2 (Human Epidermal Growth Factor Receptor 2), can cause adverse effects on the heart. Direct inhibition of PI3Ka is now in clinical trials, but the effects of PI3Ka pathway inhibition on heart atrophy, remodeling, and function in the context of cancer therapy are not well understood. Method and Results-—Pharmacological PI3Ka inhibition and heart-specific genetic deletion of p110a, the catalytic subunit of PI3Ka, was characterized in conjunction with anthracycline (doxorubicin) treatment in female murine models. Biventricular changes in heart morphological characteristics and function were analyzed, with molecular characterization of signaling pathways. Both PI3Ka inhibition and anthracycline therapy promoted heart atrophy and a combined effect of distinct right ventricular dilation, dysfunction, and cardiomyocyte remodeling in the absence of pulmonary arterial hypertension. Congruent findings of right ventricular dilation and dysfunction were seen with pharmacological and genetic suppression of PI3Ka signaling when combined with doxorubicin treatment. Increased p38 mitogen-activated protein kinase activation was mechanistically linked to heart atrophy and correlated with right ventricular dysfunction in explanted failing human hearts. Conclusions-—PI3Ka pathway inhibition promotes heart atrophy in mice. The right ventricle is specifically at risk for dilation and dysfunction in the setting of PI3K inhibition in conjunction with chemotherapy. Inhibition of p38 mitogen-activated protein kinase is a proposed therapeutic target to minimize this mode of cardiotoxicit

    PI3Kα-regulated gelsolin activity is a critical determinant of cardiac cytoskeletal remodeling and heart disease

    Get PDF
    Biomechanical stress and cytoskeletal remodeling are key determinants of cellular homeostasis and tissue responses to mechanical stimuli and injury. Here we document the increased activity of gelsolin, an actin filament severing and capping protein, in failing human hearts. Deletion of gelsolin prevents biomechanical stress-induced adverse cytoskeletal remodeling and heart failure in mice. We show that phosphatidylinositol (3,4,5)-triphosphate (PIP3) lipid suppresses gelsolin actin-severing and capping activities. Accordingly, loss of PI3Kα, the key PIP3-producing enzyme in the heart, increases gelsolin-mediated actin-severing activities in the myocardium in vivo, resulting in dilated cardiomyopathy in response to pressure-overload. Mechanical stretching of adult PI3Kα-deficient cardiomyocytes disrupts the actin cytoskeleton, which is prevented by reconstituting cells with PIP3. The actin severing and capping activities of recombinant gelsolin are effectively suppressed by PIP3. Our data identify the role of gelsolin-driven cytoskeletal remodeling in heart failure in which PI3Kα/PIP3 act as negative regulators of gelsolin activity

    Separation of early afterdepolarizations from arrhythmogenic substrate in the isolated perfused hypokalaemic murine heart through modifiers of calcium homeostasis

    Get PDF
    In human type 1 diabetes (T1D) and in its murine model, the major histocompatibility complex (MHC) class II molecules, human leukocyte antigens (HLA)-DQ and -DR and their murine orthologues, IA and IE, are the major genetic determinants. In this report, we have ranked HLA class II molecule-associated T1D risk in a two-sided gradient from very high to very low. Very low risk corresponded to dominant protection from T1D. We predicted the protein structure of DQ by using the published crystal structures of different allotypes of the murine orthologue of DQ, IA. We discovered marked similarities both within, and cross species between T1D protective class II molecules. Likewise, the T1D predisposing molecules showed conserved similarities that contrasted with the shared patterns observed between the protective molecules. We also found striking inter-isotypic conservation between protective DQ, IA allotypes and protective DR4 subtypes. The data provide evidence for a joint action of the class II peptide-binding pockets P1, P4 and P9 in disease susceptibility and resistance with a main role for P9 in DQ/IA and for P1 and P4 in DR/IE. Overall, these results suggest shared epitope(s) in the target autoantigen(s), and common pathways in human and murine T1D

    PI3Kα in cardioprotection: Cytoskeleton, late Na+ current, and mechanism of arrhythmias

    No full text
    PI 3-kinase α (PI3Kα) is a lipid kinase that converts phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-triphosphate (PIP3). PI3Kα regulates a variety of cellular processes such as nutrient sensing, cell cycle, migration, and others. Heightened activity of PI3Kα in many types of cancer made it a prime oncology drug target, but also raises concerns of possible adverse effects on the heart. Indeed, recent advances in preclinical models demonstrate an important role of PI3Kα in the control of cytoskeletal integrity, Na+ channel activity, cardioprotection, and prevention of arrhythmias
    corecore