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Abstract  

Background: PI3Kα (Phosphoinositide 3-kinase α) regulates multiple downstream 

signaling pathways controlling cell survival, growth, and proliferation and is an attractive 

therapeutic target in cancer and obesity. The clinically-approved PI3Kα inhibitor, BYL719, 

is in further clinical trials for cancer and overgrowth syndrome. However, the potential 

impact of PI3Kα inhibition on the heart and following myocardial infarction (MI) is unclear. 

We aim to determine whether PI3Kα inhibition affects cardiac physiology and post-MI 

remodeling and to elucidate the underlying molecular mechanisms. 

Methods and Results: Wildtype (WT) 12-wk old male mice receiving BYL719 (daily, p.o.) 

for 10 days showed reduction in left ventricular longitudinal strain with normal ejection 

fraction, weight loss, mild cardiac atrophy, body composition alteration, and prolonged 

QTC interval. RNASeq analysis showed gene expression changes in multiple pathways 

including extracellular matrix remodeling and signaling complexes. After MI, both p110α 

and phospho-Akt protein levels were increased in human and mouse hearts. 

Pharmacological PI3Kα inhibition aggravated cardiac dysfunction and resulted in adverse 

post-MI remodeling, with increased apoptosis, elevated inflammation, suppressed 

hypertrophy, decreased coronary blood vessel density, and inhibited Akt/GSK3β/eNOS 

signaling. Selective genetic ablation of PI3Kα in endothelial cells was associated with 

worsened post-MI cardiac function and reduced coronary blood vessel density. In vitro, 

BYL719 suppressed Akt/eNOS activation, cell viability, proliferation, and angiogenic 

sprouting in coronary and human umbilical vein endothelial cells. Cardiomyocyte-specific 

genetic PI3Kα ablation resulted in mild cardiac systolic dysfunction at baseline. After MI, 

cardiac function markedly deteriorated with increased mortality concordant with greater 
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apoptosis and reduced hypertrophy. In isolated adult mouse cardiomyocytes, BYL719 

decreased hypoxia-associated activation of Akt/GSK3β signaling and cell survival. 

Conclusions: PI3Kα is required for cell survival (endothelial cells and cardiomyocytes) 

hypertrophic response, and angiogenesis to maintain cardiac function after MI. Therefore, 

PI3Kα inhibition that is used as anti-cancer treatment, can be cardiotoxic, especially after 

MI. 

 

Keywords: angiogenesis / myocardial infarction / myocardial remodeling / signaling / 

PI3Kα 
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1. Introduction 

The phosphoinositide 3-kinases (PI3Ks) are a family of conserved lipid kinases that 

regulate critical intracellular signaling responsible for hypertrophy, survival, proliferation, 

and metabolism [1, 2]. PI3Kα is the functionally dominant PI3K isoform in many cell types 

and a key regulator in a wide range of cellular processes. The catalytic conversion of 

phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P2 or PIP2) to phosphatidylinositol-

3,4,5-trisphosphate (PtdIns(3,4,5)P3 or PIP3) leads to membrane recruitment of Akt, 

allowing the phosphorylation of an effector kinase, Akt, at Thr308 by PDK1. 

Subsequently, Akt phosphorylates downstream effectors and regulates various 

pathways, including glycogen synthase kinase 3β (GSK3β) and endothelial nitric oxide 

synthase (eNOS). PI3Kα signaling mediates cell survival, growth, electrophysiology and 

metabolism in different cell types [3-6].  

Due to the widespread expression and diverse roles of PI3Kα, the aberrations in 

PI3Kα signaling are associated with a broad spectrum of human diseases including 

cancer. Gain-of-function mutations of PIK3CA, the gene that encodes the p110α (catalytic 

subunit of PI3Kα), are frequent in many human tumors such as lung, head and neck, 

breast, endometrial, and cervical cancer [7]. In addition, disruptions of PI3Kα signaling 

contribute to obesity, diabetes, and heart failure [8-10]. Currently, several PI3Kα inhibitors 

are in clinical trials as cancer treatment [11]. One of them, BYL719 (Alpelisib), has 

demonstrated dose- and time-dependent PI3Kα inhibition in both animal and human 

studies [12-15] and is therapeutic in PIK3CA-related solid tumors and overgrowth 

syndrome in recent clinical trials [14-16].  
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Heart disease is the leading cause of death followed by cancer [17] and both are 

frequently present in the same patient. Following myocardial infarction (MI), cardiac repair 

and remodeling, which are the result of complex interactions of cardiomyocytes and 

vascular endothelial cells, define cardiac recovery and patient outcomes [18]. We and 

others have identified PI3Kα as a regulator of physiological hypertrophy, insulin signaling, 

ion channel activity, and contractility in cardiomyocytes [4, 19-21] while maintaining 

vascular function and tone [2, 3]. However, cell-specific role of PI3Kα on post-MI cardiac 

remodeling has not been elucidated and the increased use of PI3Kα inhibitors in clinical 

practice as novel cancer therapies may result in cardiotoxicity due to inhibition of PI3Kα 

in both cardiomyocytes and endothelial cells [22, 23]. Indeed, very little is known about 

the potential cardiotoxicity with PI3Kα inhibition. 

In the present study, we showed that BYL719 administration in mice is associated 

with reduced global left ventricular longitudinal strain, prolonged QT interval, and altered 

gene expression profile. In mice receiving BYL719, post-MI vascular density was 

reduced, hypertrophy was suppressed, and myocardial apoptosis was increased. We also 

examined cell-specific effects of the loss of PI3Kα activity in post-MI cardiac remodeling 

by studying post-MI remodeling in endothelial-specific (p110αEC) and cardiomyocyte-

specific (p110αCM) PI3Kα knockouts. We found that in endothelial cells, PI3Kα controls 

endothelial survival, proliferation, and angiogenesis, while in adult cardiomyocytes, PI3Kα 

is important for cell survival. Our study highlights the potential cardio-oncology issues 

associated with this new class of cancer therapy.  
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2. Methods 

Detailed methods used in the present study and all other supporting data are available in 

the Data Supplement. 

 

2.1 Animal Models 

All animal studies were conducted according to the Canadian Council for Animal Care 

guidelines and approved by Animal Care and Use Committee at University of Alberta. 

Wild type (WT) C57BL/6 mice were purchased from Jackson Laboratory. BYL719 (50 

mg/Kg/day, p.o., Chemietek) or vehicle was given to 11- to 12-week-old WT mice in the 

morning for 10 days. Inducible endothelial-specific PI3Kα-knockout mice (p110αEC) were 

generated by crossing p110αflx/flx mice (PIK3CA gene with floxed 18 and 19 exons) [3] 

with tamoxifen-induced and Tie2 promoter-controlled Cre expression mice (Tie2-

MerCreMer). Tamoxifen (80 mg/kg/day, Sigma-Aldrich) was given to 10-week-old mice 

by intraperitoneal injection for 5 days to induce endothelial-specific, floxed-exon deletion 

in p110α; this method has been previously shown to spare hematopoietic cells from 

targeted gene deletion [24, 25]. Cardiomyocyte-specific PI3Kα-knockout mice (p110αCM) 

were generated by crossing p110αflx/flx with αMHC-driven Cre expressing mice [4]. 

Homozygous littermates (p110αflx/flx) of p110αEC and p110αCM mice were used as control. 

All mice were on the C57BL/6 background. Only male mice were used in the experiments.  

The pharmacological inhibition of PI3Kα was achieved by gavage with BYL719 (50 

mg/kg by) daily for 10 days (Figure 1A). The dosing was based on studies that confirmed 

the therapeutic effects on PI3Kα-driven tumors in mice (osteosarcoma, lung cancer, and 

squamous cell carcinomas).[26-28] Blood glucose measured after overnight fasting 
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without glucose challenge. Myocardial infarction was achieved by permanently ligating 

the proximal left anterior descending artery (LAD) of 12-week-old mice after they received 

3 doses of BYL719 [29]. Surgery was performed by a technician who was blinded to the 

mouse strains and treatment. Tissue collection was performed on mice anesthetized with 

ketamine (100 mg/kg) and xylazine (10 mg/kg). 

 

2.2 Human Explanted Hearts 

Human cardiac specimens from non-failing control (NFC) and failing post-MI hearts were 

obtained as part of the Human Organ Procurement and Exchange program (HOPE) and 

Human Explanted Heart Program (HELP) respectively, approved by the Mazankowski 

Alberta Heart Institute and the Institutional Ethics Committee at University of Alberta [30].  

 

2.3 Body Composition Measurement, Echocardiography and Electrocardiogram 

Body composition was measured in live, conscious mice using a NMR-MRI scanner 

(EchoMRI) [31]. Non-invasive transthoracic echocardiography was performed on mice 

anesthetized with 1.5% isoflurane using Vevo 3100 (Visualsonics). Conventional 

measurements and speckle-tracking strain analysis was carried out as previously 

described including the fractional area change (FAC) as a measure of RV systolic function 

[25]. Non-invasive electrocardiogram in lead I configuration was carried out as described 

[20, 25]. 
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2.4 Endothelial Cell Culture, Flow Cytometry, and Bead Angiogenesis Assay 

Human umbilical vein endothelial cells (HUVEC) and human coronary artery endothelial 

cells (HCAEC, ATCC) were used between passage 3 to 7. BYL719 was used at indicated 

doses. Recombinant human vascular endothelial growth factor (VEGF165, PeproTech) 

was added to stimulate endothelial cell responses at 50 ng/ml. Cell survival was examined 

on overnight vehicle- or BYL719-treated cell using flow cytometry (Attune NxT, Invitrogen) 

with annexin V and propidium iodide staining (Invitrogen). In vitro 3 dimensional (3D 

spheroid) angiogenesis assays were performed on HUVEC and HCAEC as previously 

described [25]. 

 

2.5 Adult Murine Cardiomyocyte Isolation, Culture, and Stretching 

Adult murine ventricular cardiomyocytes were isolated from 2% isoflurane anesthetized 

mice. Plated cardiomyocytes were cultured with vehicle, BYL719, or PI3Kγ inhibitor-

AS252424 for 1 hour under normoxia (20% O2, 2% CO2) or hypoxia (1% O2, 2% CO2) 

before protein collection. Cyclical mechanical stretch of cardiomyocytes was achieved 

using Flexcell FX-5000 Tension System (Flexcell International Corp) at 1 Hz and 5% 

elongation for 3 hours in serum-free culture medium under hypoxic atmosphere [25]. Then, 

cells were collected for morphologic study. 

 

2.6 Immunofluorescence and Immunoblotting 

Immunofluorescence staining was performed using established protocols [25]. Antibodies 

against CD31, Ly6B, CD68, Ki67, and BrdU were used. Intravital perfusion with 

fluorescein-conjugated lectin (Vectorlabs) was performed to identify the functional 
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vasculature. Wheat Germ Agglutinin (WGA) or phalloidin staining was performed to 

identify cardiomyocytes. Fragmented DNA of apoptotic cells was detected using the 

DeadEnd Fluorometric Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick-End 

Labeling (TUNEL) System. Immunoblotting for various proteins was performed on left 

ventricular homogenates or cultured cell lysates as before [24, 25].  

 

2.7 RNA Sequencing Analysis 

RNA isolation and RNA sequencing were performed as previously described.[32] Total 

RNAs from left ventricles (6 hearts/group) were extracted. Altered genes were defined by 

the boundary conditions: padj < 0.1 and expression level of at least 750 TPM (transcripts 

per million) for either WT-vehicle or WT-BYL group (750 is 1% of 75,000 TPM, which was 

a maximal expression level in the dataset). Data were analyzed using WebGestalt, 

Protein ANalysis THrough Evolutionary Relationships (PANTHER) classification system 

(Pantherdb.org), and Ingenuity Pathway Analysis.  

 

2.8 Statistical Analysis 

Statistical analyses were carried out using SPSS Statistics 24 software, and statistical 

significance was defined as p<0.05 (two-sided). Continuous data were presented in 

scatter plots with mean ± SEM. The differences between the two independent groups 

were evaluated using independent t-test or Mann-Whitney U test after normality 

examination. Paired t-test was carried out for two paired groups. One-way ANOVA or 

Kruskal-Wallis test with pairwise comparisons was used in studies with more than two 

groups based on the normality of the data. Two-way ANOVA was used to compare the 
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differences between groups with two independent variables. Repeated measures ANOVA 

was carried out in data with multiple measures. Categorical data were compared using 

Fisher exact test. Survival data were presented as the Kaplan-Meier plots, and the log-

rank test was used to evaluate the statistical significance.  

 

3. Results 

3.1 Inhibition of PI3Kα with BYL719 results in adverse systemic changes and 

altered myocardial gene expression  

BYL719 resulted in weight loss, leading to a decrease in body weight, and transiently 

increased blood glucose, but not fasting glucose (Figure 1A-1C). The mice displayed an 

increase in fat mass with a corresponding decrease in lean mass over the 10-day 

treatment period, associated with reduced heart and left ventricular weight (Figure 1D 

and 1E). Despite the preserved ejection fraction in BYL719-treated mice, stroke volume 

and global longitudinal strain were reduced (Table S1 and Figure 1F). The QTC interval 

was prolonged without alterations in the heart rate, PR interval, or QRS duration (Figure 

1G and Figure S1).  

To investigate the effect of pharmacological inhibition of PI3Kα at the molecular 

level in the heart, we performed gene profiling of the LV tissue from mice treated with 

placebo or BYL719 (Data Supplement Bulk-RNAseq). A total of 292 genes were changed 

after BYL719 exposure, with log2 FC (Fold Change) for the most genes in the approximate 

range of –2 to 2 (Figure 1H; heatmap of the most changed genes, Figure S2A; list of top 

10 affected genes, Table S1; principle component analysis plot, Figure S3). Gene set 

enrichment analysis showed multiple changes in categories of biological regulation, 
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metabolic processes, response to stimulus (Figure S2B); membrane and nucleus, 

protein-containing complex, (Figure S2C); protein binding, ion binding, and nucleotide 

binding (Figure S2D). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

analysis showed downregulation of pathways related to structural integrity (extracellular 

matrix (ECM)-receptor interaction, focal adhesion) metabolism of glucose and proteins 

(protein digestion and absorption, AGE-RAGE signaling), and electrical activity (Figure 1I) 

and upregulation of metabolic pathways responsible for degradation of ketones, fatty 

acids, and several amino acids (Figure 1J). Taken together, these results demonstrate 

that PI3Kα inhibition with BYL719 results in mild adverse systemic effects, altered 

myocardial gene expression and early cardiac dysfunction.  

 

3.2 PI3Kα in human and murine post MI hearts  

Left ventricular specimens from post-MI patients showed markedly increased levels of 

p110α, the catalytic subunit of PI3Kα, in the infarct and peri-infarct regions. This increase 

correlated with enhanced Akt phosphorylation in these regions compared with non-failing 

human hearts (Figure 2A). We observed similar changes in PI3Kα/Akt signaling in post-

MI murine hearts (Figure 2A) showing a conserved response in humans and mice. These 

changes suggest that the PI3Kα pathway is upregulated in response to MI and may have 

an adaptive role. To investigate this possibility, we induced MI by LAD ligation in mice 

treated with either vehicle or BYL719 (Figure 2B). BYL719 treatment decreased post-MI 

survival due to increase in non-rupture related deaths (Figure 2C). Echocardiographic 

analyses showed exacerbation of systolic dysfunction in BYL719 versus vehicle-treated 

post-MI mice, characterized by decreased ejection fraction, enlarged left ventricular 
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chamber, and worsened wall motion index (Figure 2D and Table S2). Interestingly, right 

ventricular fractional area change, a measure of RV systolic function, was also further 

compromised in the post-MI setting in response to BYL719 (Figure 2D and Table S2). 

Because myocardial apoptosis determines the severity of myocardial ischemic 

injury, we evaluated apoptosis using TUNEL staining. One-day post-MI, BYL719-

treatment increased myocardial apoptosis and elevated inflammatory cell infiltration 

compared with vehicle-treated controls (Figure 3A and 3B). In addition, BYL719 treatment 

suppressed post-MI cardiomyocyte hypertrophy and reduced coronary vascular density 

in the peri-infarct area without affecting cardiomyocyte size or vascular density of sham-

operated groups (Figure 3C and 3D). Phosphorylation of myocardial Akt (Thr308), GSK3β 

(Ser9), and eNOS (Ser1177) were reduced in BYL719-treated mice in comparison with 

vehicle-treated day 7 post-MI (Figure 3E), but levels of p110α, phospho-Akt at Ser473, 

and phospho-ERK were not altered (Figure S4). These results indicate that systemic 

PI3Kα inhibition is detrimental in the post-MI setting by curtailing protective signaling 

pathways, resulting in increased apoptosis, impaired hypertrophy, and reduced vascular 

density. 

 

3.3 Endothelial-specific PI3Kα Ablation Worsens Post-MI Remodeling  

We next examined the cell-specific role of PI3Kα signaling in endothelial cells and 

cardiomyocytes in myocardial ischemic injury. We used mice with endothelial-specific 

PI3Kα ablation (p110αEC) (Figure 4A) [25, 33, 34]. Successful ablation in endothelial cells 

was confirmed by the presence of truncated PIK3CA in the DNA extracted from lungs of 

p110αEC mice (Figure S5A). Mice with endothelial-PI3Kα ablation showed comparable 
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body weight, heart weight, and myocardial levels of p110α, phospho-Akt, and phospho-

eNOS compared to p110αflx/flx littermate controls at baseline (Figure S5B-C). Systolic 

function and global longitudinal strain were similar in p110αEC and p110αflx/flx hearts 

(Figure 4B, Figure S5D, and Table S3).  

Following MI, deterioration in systolic function worsened at 7-day and 4-week post-

MI in p110αEC hearts compared with sham; however, post-MI survival was similar (Figure 

4B, Figure S5E-F, and Table S3). Inflammatory cell infiltration was increased post-MI in 

p110αEC hearts compared with controls (Figure S5G) without altering the increase in 

cardiomyocyte size post-MI (Figure S5H). Since endothelial survival and angiogenesis is 

critical in post-infarct recovery, and PI3Kα is highly expressed in endothelial cells, we 

performed immunostaining to examine apoptosis, proliferation, and vascular density. We 

detected a higher number of apoptotic endothelial cells at day 1, decreased number of 

proliferating endothelial cells at day 3, lower vascular density, and reduced functional 

vasculature at day 7 post-MI in p110aEC mice (Figure 4C-4E). Whole-heart phospho-Akt 

levels were lower post-MI in p110αEC hearts (Figure 4F). These results indicate that 

endothelial PI3Kα is required in the infarct and peri-infarct regions of the heart to maintain 

cardiac function by supporting endothelial survival, proliferation, and angiogenesis. 

 

3.4 Inhibition of PI3Kα Impairs Angiogenesis 

To further delineate the impact of PI3Kα inhibition on endothelial cells, we examined the 

effects of BYL719 on human umbilical vein endothelial cells (HUVEC), commonly used 

primary endothelial cells, and human coronary artery endothelial cells (HCAEC), human 

coronary primary endothelial cells. We first tested the effect of BYL719 on primary 
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endothelial cells in response to VEGF. BYL719 concentration range 10-500 nmol/L was 

selected because 500 nmol/L is the lowest concentration in the plasma of patients with 

continuous BYL719 treatment [14]. In HUVEC without VEGF stimulation, BYL719 

suppressed Akt activity without affecting phospho-eNOS or p110α protein levels (Figure 

5A) while VEGF-induced Akt phosphorylation decreased in response to BYL719 

treatment in a dose-dependent manner (Figure 5B). Meanwhile, VEGF-induced eNOS 

phosphorylation was only partially suppressed by 500 nmol/L BYL719 (Figure 5B). In 

HCAEC and in the absence of VEGF, 100 nmol/L and 500 nmol/L exerted a small 

inhibition of Akt/eNOS signaling (Figure 5C) while in response to VEGF stimulation, 

BYL719 at 100 nmol/L and 500 nmol/L abolished VEGF-induced Akt activation, with 

partial inhibitory effect on eNOS phosphorylation (Figure 5D).  

BYL719 inhibition in HUVEC decreased the number of viable cells, increased 

apoptosis, and reduced proliferation (Figure 6A and 6B). The majority of HUVEC 

underwent cell death through apoptosis, not necrosis. BYL719 treatment reduced 

angiogenic sprouting illustrated by reduced number of sprouts and cumulative sprout 

length (Figure 6C). In HCAEC, both 100 nmol/L and 500 nmol/L BYL719 decreased cell 

viability, increased apoptosis, and decreased cell proliferation (Figure 6D and 6E) with 

survival analyses of HCAECs showing cell death patterns similar to HUVEC. Angiogenic 

sprouting (number of sprouts and cumulative sprout length) was inhibited by BYL719 

(Figure 6F) in HCAEC. Collectively, these results suggest that endothelial PI3Kα activity 

is required to maintain Akt/eNOS signaling in ECs, survival, proliferation, and 

angiogenesis.  
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3.5 Cardiomyocyte PI3Kα Protects Against Ischemic Injury by Inhibiting Apoptosis 

and Supporting Hypertrophy  

We next investigated the role of PI3Kα in the cardiomyocytes during MI was investigated 

using mice with cardiomyocyte-specific p110α ablation (p110αCM) (Figure S6A). The 

p110αCM mice express truncated PIK3CA gene (Figure S6B). These mice had unchanged 

body weight and displayed reduced heart weight and left ventricular weight compared to 

p110αflx/flx littermates (Figure 7A), similar to the findings from BYL719-treated WT mice. 

p110αCM hearts showed marked reduction in p110α and basal phospho-GSK3β levels 

without differences in basal phospho-Akt level (Figure S6C). Cardiomyocyte-specific 

PI3Kα deficiency exacerbated post-MI systolic dysfunction, enlargement of the left 

ventricle, and increased mortality due to cardiac rupture (Figure 7B, 7C, and Table S4). 

Although p110αCM hearts showed no apoptosis at baseline, the number of apoptotic cells 

detected in p110αCM hearts at day 1 post-MI was considerably larger than in p110αflx/flx 

(Figure 7D). p110αCM hearts also displayed an increase in inflammatory responses after 

MI as shown by increased infiltration by neutrophils and macrophages (Figure S6D). Post-

MI myocardial hypertrophy and vascular density in the non-infarct area was compromised 

in p110αCM hearts (Figure 7E and Figure S6E). Furthermore, Akt phosphorylation was 

lower in p110αCM hearts after MI (Figure 7F). These results suggest that (i) under normal 

physiological conditions, cardiomyocyte PI3Kα plays a role in maintaining normal cardiac 

function and (ii) in the post-MI setting, cardiomyocyte PI3Kα controls cell survival and 

hypertrophy.  

To elucidate acute effects of the PI3Kα activity on cardiomyocyte survival, adult 

mouse cardiomyocytes were isolated from WT mice, and treated with BYL719 in normoxic 
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and hypoxic conditions. While BYL719 had no effect on Akt activity under normoxic 

condition, it inhibited hypoxia-induced Akt activation and GSK3β phosphorylation in a 

dose-dependent manner (Figure 8A). This effect could not be attributed to potential role 

of PI3Kγ since using AS252424, a specific inhibitor of PI3Kγ, caused further inhibition of 

Akt phosphorylation without a differential effect on GSK3β phosphorylation (Figure S7). 

These results confirm that lowered GSK3β phosphorylation in the p110αCM hearts and in 

cells treated with BYL719 is directly link to decrease in PI3Kα signaling. Subjecting 

cultured isolated cardiomyocytes to 3-hr mechanical stretching under hypoxia to simulate 

in vivo conditions revealed increased cardiomyocyte apoptosis (Figure 8B). BYL719 

treatment also blunted the hypoxia-triggered increase in F/G-actin ratio (Figure 8C), a key 

control mechanism for PI3Kα [9], rendering cells more vulnerable to biomechanical stress. 

Taken together, PI3Kα activity plays a role in post-MI hypertrophy, cytoskeletal response 

to biomechanical stress, and cell survival by protecting against hypoxia-induced 

apoptosis.  

 

4. Discussion 

Cardiovascular disease (CVD) and cancer are the two leading causes of death worldwide 

[35, 36] and are closely linked illustrated by cancer patients having a higher incidence of 

ischemic heart disease, and vice versa [37, 38], which has been attributed to shared risk 

factors and, importantly, the consequence of cancer therapy having detrimental effects 

on the cardiovascular system [22, 23, 39, 40]. Since PI3Kα is emerging as a major target 

for cancer therapies [12-16], knowledge of PI3Kα function in healthy and post-MI hearts 

is critical for optimization of treatment of ischemic heart disease and cancer care. 
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Activation of the PI3Kα/Akt signaling pathway contributes to cancer development 

and progression as PI3Kα activity is frequently activated in a variety of common human 

tumors [7]. Use of PI3Kα-specific inhibitors, such as alpelisib (BYL719) and serabelisib, 

has achieved initial success on advanced solid tumors especially in combination with 

standard anti-cancer therapy [14, 15, 41, 42]. The major toxic effects of PI3Kα inhibitors 

reported in clinical trials are hyperglycemia, cutaneous reactions, and gastrointestinal 

discomfort [43]. In this study, we used the dose of 50 mg/kg because it produces robust 

anti-tumor response in mouse models [12, 26-28] comparable to the antitumor effects 

and burden of hyperglycemia seen in humans [14, 44]. In our study, we found that BYL719 

also leads to transient hyperglycemia associated with lean mass reduction and fat mass 

increase, which are associated with poor outcomes in CVD [31, 45]. Treatment with 

BYL719 also resulted in reduced cardiac size, prolonged QTc interval, and compromised 

LV global longitudinal strain. Both prolonged QTC interval and lower global longitudinal 

strain have been associated with a higher risk of cardiovascular morbidity and mortality 

in patients [46, 47]. BYL719-mediated prolongation of QTc interval is due to the inhibition 

of the late sodium current in cardiomyocytes, which increases the risk of ventricular 

arrhythmias [11, 20]. BYL719 also resulted in transcriptome changes in the heart 

characterized by (i) disruptions in pathways responsible for metabolism of glucose, fatty 

acids, and amino acids; (ii) downregulation of the pathways responsible for structural 

integrity (ECM-receptor interactions and focal adhesion); and (iii) disruptions in 

excitability. Taken together, our study demonstrates that the systemic (e.g., 

hyperglycemia) and cardiac-specific effects of PI3Kα inhibition predispose the heart to 

greater cardiovascular risks.  
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We found that the PI3Kα inhibitor, BYL719, has detrimental effects on cardiac 

health and post-MI cardiac repair, suggesting that both endothelial and cardiomyocyte 

PI3Kα plays an important role in cardiac recovery after MI (Figure 8D). In both human 

and murine hearts, p110α and Akt phosphorylation were upregulated after MI suggesting 

that PI3Kα/Akt signaling is required for compensatory post-MI ventricular remodeling and 

revascularization (Figure 8D, green paths). Pharmacological inhibition of PI3Kα (Figure 

8D, red paths) inhibits both cardiomyocyte and endothelial PI3Kα leading to increased 

apoptotic cell death, decreased cardiomyocyte hypertrophy, and diminished 

angiogenesis. Reduced number of cardiomyocytes, disrupted compensatory 

hypertrophy, and diminished re-vascularization resulted in exacerbated cardiac 

dysfunction and a tendency to increased mortality after MI. Importantly, post-MI 

biventricular dysfunction was exacerbated by inhibition of PI3Kα signaling. Our findings  

are corroborated by the increased risk of heart failure in patients treated with sunitinib, a 

tyrosine kinase inhibitor with antitumor and antiangiogenic activities [48] and are likely to 

translate to other types of chemotherapy such as anthracycline where cell protective 

signaling plays a dominant role [31, 49]. 

Endothelial PI3Kα signaling is required to maintain vascular function under 

physiologic conditions with endothelial cells under unstressed physiologic conditions. 

Post-MI, endothelial-specific PI3Kα ablation resulted in (i) unchanged mortality, (ii) 

increased apoptosis and inflammation, (iii) reduced angiogenesis in infarct and peri-

infarct areas, and (iv) worsened cardiac dysfunction. Reduced angiogenesis in response 

to PI3Kα inhibition was also observed in vitro and was mediated via Akt/eNOS signaling 

consistent with a key role of eNOS in increasing capillary density post-MI and attenuating 
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heart failure [50, 51]. We observed that the cardiomyocyte PI3Kα is required to maintain 

heart weight, and normal cardiac function. Cardiomyocyte-specific PI3Kα ablation lead to 

considerable increase in mortality and was associated with enhanced myocardial 

apoptosis and inflammation, suppressed adaptive hypertrophy, reduced angiogenesis in 

non-infarct area, and worsened cardiac dysfunction. The cardioprotective effects seen 

with increased cardiac PI3Kα activity further corroborate our results [52].  

Clinical implications of PI3Kα inhibition. Our results suggest (i) a therapeutic 

potential of upregulation of cardiac PI3Kα to enhance post-MI cardiac repair by improving 

cell survival and angiogenesis; (ii) a concern of cardiotoxicity of PI3Kα inhibitors in healthy 

and MI hearts. Patients receiving these drugs in clinical trials need close monitoring 

especially in patients with preexisting cardiovascular disease. Further research is needed 

into the development of strategies to counteract cardiotoxic effects of PI3Kα inhibition for 

healthy and MI hearts.  
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Figure Legends 

Figure 1. Systemic effects and changes in the transcriptome with BYL719 

treatment. A. Schematic of experimental design for 10-day BYL719 administration in WT 

mice. B. Time course of body weight changes during BYL treatment (left: n=10-11 

mice/group) and body weight after 10-day treatment with vehicle or BYL719 (right: n=17-

18 mice/group). C. Blood glucose level in mice treated with vehicle or BYL719 (n=9-13 

mice/group) at 3 and 10 days. D. Alteration of body composition in mice after 10-day 

treatment with vehicle or BYL719 (n=9 mice/group). E. Heart weight and left ventricular 

weigh in mice after 10-day treatment with vehicle or BYL719 (n=16 mice/group). F. 

Representative M-mode images, ejection fraction (EF) (n=10 mice/group), and left 

ventricular longitudinal strain analysis (n=7 mice/group) in mice after 10-day treatment 

with vehicle or BYL719. G. QTc interval in mice treated with BYL719 on Day 0 (before 

administration), Day 3, and Day 10 (n=11 mice). H. Volcano plot of gene expression 

changes due 10-day treatment with BYL719. Blue symbols: altered genes defined by the 

boundary conditions (p < 0.1 and expression levels for WT-vehicle or WT-BYL of at least 

1% of maximal expression level, 75,000 TPM). Grey symbols: genes that did not satisfy 

boundary conditions. I. Over-representation analysis of upregulated genes within KEGG 

(Kyoto Encyclopedia of Genes and Genomes) pathways displayed as an enrichment ratio 

(x axis). J. Over-representation analysis of downregulated genes within KEGG pathways 

displayed as an enrichment ratio (X-axis). Data are presented as mean±SEM; statistical 

significance is calculated using repeated measures ANOVA with pairwise test in B and 

G; independent t-test in B, D, E, and F; one-way ANOVA in C. *p<0.05 vs WT-Vehicle 
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group in B and D-F, vs fasting in C, and vs day 0 in F; #p<0.05 vs WT-Vehicle (1 h post 

treatment) in C. 

 

Figure 2. Alterations in PI3Kα pathway in human and murine hearts post MI and the 

effect of BYL719 on post-MI mortality and cardiac function. A. Protein levels of p110α 

and phosphorylation levels of Akt in control (non-failing control (NFC) or Sham) and post-

MI hearts (n=4-5 hearts/group). B. Schematic of experimental design for testing the effect 

of BYL719 treatment on post-MI remodeling. C. Kaplan-Meier survival curve (left) and 

distribution of causes of death (right) in post-MI mice treated with vehicle or BYL719 (n=26 

mice/group) (p=0.065). D. Echocardiographic assessment of cardiac function at 7 days 

post MI: representative M-mode images, left ventricular ejection fraction (EF), right 

ventricular fractional area change (FAC), left ventricular end-systolic volume (LVESV), 

left ventricular end-diastolic volume (LVEDV), and wall motion score index (WMSI) in 

mice treated with vehicle or BYL719 (n=10-14 mice/group). Data are presented as 

mean±SEM; statistical significance is calculated using one-way ANOVA in A, log-rank 

test and fisher exact test in C, and two-way ANOVA with pairwise test in D; *p<0.05 vs 

NFC or sham, #p<0.05 vs WT-Vehicle 7-day MI. 

 

Figure 3. BYL719 and post-MI ventricular remodeling. A. Apoptosis: terminal 

deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL, green) and 

DAPI (blue) staining of the sections of 1-day post-MI hearts; representative images (left) 

and quantification (right, n=5 hearts/group). B. Inflammation: immunofluorescence 

staining for neutrophils (anti-Ly6B, red; top: representative images, left, and 
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quantification, right) and macrophages (anti-CD68, red; bottom: representative images, 

left, and quantification, right); DAPI (blue); n=5 hearts/group. C. Cellular hypertrophy: 

wheat germ agglutinin (WGA) staining (green) to outline cardiomyocyte; DAPI (blue); 

representative images (left) and quantification (right, n=5 hearts/ group). D. 

Vascularization: endothelial cell immunofluorescence staining (anti-CD31, red); DAPI 

(blue); representative images (left) and quantification (right, n=5 hearts/group). E. 

Western blots and quantifications of phosphorylation levels of Akt-T308, GSK3β-S9, and 

eNOS-S1177 in left ventricular lysates (n=4-5 hearts/group). Data are presented as 

mean±SEM; statistical significance is calculated using two-way ANOVA with pairwise 

comparison in A, C, and D, independent t-test in B, and one-way ANOVA in E; *p<0.05 

vs sham, #p<0.05 vs WT-Vehicle MI. 

 

Figure 4. Endothelial PI3Kα is required for preservation of cardiac function and 

angiogenesis after MI. A. Schematic of experimental design for testing the role of 

endothelial PI3Kα in post-MI remodeling using conditional knock-out (p110αEC) and 

control (p110αflx/flx littermates) mice. B. Echocardiographic assessment of cardiac 

function at 7 days post MI: representative M-mode images, ejection fraction (EF), left 

ventricular end-systolic volume (LVESV), left ventricular end-diastolic volume (LVEDV), 

and wall motion score index (WMSI) (n=10 mice/group). C. Endothelial apoptosis: 

immunofluorescence staining of endothelial cells (ECs) (CD31, red), TUNEL (green), and 

DAPI (blue): representative images (left, white arrows indicate red-green co-localization) 

and quantification (right, n=5 hearts/group). D. Endothelial proliferation: 

immunofluorescence staining for ECs (CD31, green), immunofluorescence staining of 
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proliferating ECs (Ki67, red), and DAPI (blue): representative images (left, white arrows 

indicate red-green co-localization) and quantification (right, n=5 hearts/group). E. 

Vascularization: immunofluorescence staining of ECs (CD31, red; top), lectin (green; 

middle) in vivo perfusion, and quantifications (bottom, n = 5 hearts/group). F. Western 

blots and quantification of Akt phosphorylation in 7-day post-MI hearts (n=4-7 

hearts/group). Data are presented as mean±SEM; statistical significance is calculated 

using two-way ANOVA with pairwise comparisons in B-E, and independent t-test in F; 

*p<0.05 vs sham in B and E, vs infarct in C and D, vs indicated group in F, #p<0.05 vs 

p110αflx/flx within the same treatment.  

 

Figure 5. PI3Kα activity is required to maintain Akt/eNOS signaling in endothelial 

cells. A. Inhibition of PI3Kα by BYL719 and Akt/eNOS signaling in cultured human 

umbilical vein endothelial cells (HUVEC) (no VEGF; n=3 independent experiments). B. 

Effect of inhibition of PI3Kα by BYL719 on vascular endothelial growth factor (VEGF)-

induced Akt/eNOS activation in HUVEC (n=3 independent experiments). C. Inhibition of 

PI3Kα by BYL719 and Akt/eNOS signaling in human coronary artery endothelial cells 

(HCAEC) (no VEGF, n=4 independent experiments). D. Effect of inhibition of PI3Kα by 

BYL719 on VEGF-stimulated Akt/eNOS signaling in HCAEC (n=4 independent 

experiments). Data are presented as mean±SEM; statistical significance is calculated 

using one-way ANOVA; *p<0.05 vs vehicle without VEGF, #p<0.05 vs vehicle with VEGF.  

 

Figure 6. PI3Kα activity is required for endothelial cell survival, proliferation, and 

angiogenesis. A. Effect of BYL719 (500 nmol/L) on cell survival of HUVEC: flow 
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cytometry images and quantification of staining with annexin V and propidium iodide (n=6 

independent experiments). B. Effect of BYL719 (500 nmol/L) on proliferation rate of 

HUVEC: BrdU (red) and DAPI (blue) staining (n=8 independent experiments). C. Effects 

of BYL719 (500 nmol/L) on angiogenic sprouting in HUVEC (n=4 independent 

experiments). D. Effect of BYL719 (500 nmol/L) on cell survival of HCAEC: flow cytometry 

images and quantification of staining with annexin V and propidium iodide (n=5 

independent experiments). E. Effects of BYL719 (500 nmol/L) on proliferation rate of 

HCAEC: BrdU (red) and DAPI (blue) staining (n=6 independent experiments). F. Effects 

of BYL719 (500 nmol/L) on angiogenic sprouting in HCAEC (n=4 independent 

experiments). Data are presented as mean±SEM; statistical significance is calculated 

using independent t-test in A-C, one-way ANOVA in D-F; *p<0.05 vs vehicle.  

 

Figure 7. Role of cardiomyocyte PI3Kα at baseline and in post-MI cardiac 

remodeling. A. Body weight, heart weight, and left ventricular weight in cardiomyocyte-

specific knockout (p110αCM) and control (littermates, p110αflx/flx) mice (n=9-14 

mice/group). B. Echocardiographic assessment of cardiac function at 7 days post MI: 

representative M-mode images, left ventricular ejection fraction (EF), right ventricular 

fractional area change (FAC), left ventricular end-systolic volume (LVESV), and left 

ventricular end-diastolic volume (LVEDV) (n=10 mice/group). C. Kaplan-Meier survival 

analysis for survival rate (top) and cardiac rupture incidence (bottom) (n=13-30 

mice/group). D. Apoptosis: TUNEL (green) and DAPI (blue) staining: representative 

images (left) and quantification (right, n=4 hearts/group). E. Cellular hypertrophy: WGA 

(green) staining to outline cardiomyocytes: representative images (left) and quantification 
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(right, n=5 hearts/group). F. Western blots and quantification for Akt in left ventricle 

lysates from post-MI p110αCM and p110αflx/flx hearts (n=4-5 hearts/group). Data are 

presented as mean±SEM; statistical significance is calculated using independent t-test in 

A and F, two-way ANOVA with pairwise comparison in B, D, and E, and log-rank test in 

C; *p<0.05 vs p110αflx/flx in A, C, and F, vs sham in B, D, and E, #p<0.05 vs p110αflx/flx MI.  

 

Figure 8. Effects BYL719 on isolated adult mouse cardiomyocytes under hypoxia 

and schematic of the roles of PI3Kα in cardiomyocytes and endothelial cells at 

baseline and post MI. A. Western blots and quantification of Akt/GSK3β signaling in 

lysates from cardiomyocytes cultured under normoxic and hypoxic condition (n=6 hearts, 

3 independent experiments). B. Representative images (left) and quantification of 

apoptotic cell death (right) of isolated cardiomyocyte under hypoxic condition with cyclic 

mechanical stretch (right, n=8 hearts, 4 independent experiments). C. Representative 

images of F-actin (green), G-actin (red), and DAPI (blue) staining (left) and quantification 

of F/G-actin ratio (right, n=8 hearts, 4 independent experiments). D. Schematic of the 

roles of PI3Kα in cardiomyocytes and endothelial cells at baseline and post-MI: in 

cardiomyocyte, PI3Kα regulates survival and adaptive hypertrophy; in endothelial cells, 

PI3Kα regulates survival and angiogenesis to maintain vascular distribution in response 

to MI. Data are presented as mean±SEM; statistical significance is calculated using one-

way ANOVA in A and B, two-way ANOVA with pairwise comparison in C; *p<0.05 vs 

normoxia in A and C, vs vehicle in B, #p<0.05 vs hypoxia-vehicle in A and C. 
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Figure 2 Chen, X. et al. 

Figure 2. Alterations in PI3Kα pathway in human and murine hearts post MI and the effect of BYL719 on 

post-MI mortality and cardiac function. (A) Protein levels of p110α and phosphorylation levels of Akt in control 

(non-failing control (NFC) or Sham) and post-MI hearts (n=4-5 hearts/group). (B) Schematic of experimental 

design for testing the effect of BYL719 treatment on post-MI remodeling. (C) Kaplan-Meier survival curve (left) and 

distribution of causes of death (right) in post-MI mice treated with vehicle or BYL719 (n=25-26 mice/group) (p=

0.065). (D) Echocardiographic assessment of cardiac function at 7 days post MI: representative M-mode images, 

left ventricular ejection fraction (EF), right ventricular fractional area change (FAC), left ventricular end-systolic 

volume (LVESV), left ventricular end-diastolic volume (LVEDV), and wall motion score index (WMSI) in mice 

treated with vehicle or BYL719 (n=10-14 mice/group). Data are presented as mean±SEM; statistical significance is 

calculated using one-way ANOVA in A, log-rank test and fisher exact test in C, and two-way ANOVA with pairwise 

test in D; *p<0.05 vs NFC or sham, #p<0.05 vs WT-Vehicle 7-day MI.
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Figure 3 Chen, X. et al. 

Figure 3. BYL719 and post-MI ventricular remodeling. (A) Apoptosis: terminal deoxynucleotidyl transferase-

mediated dUTP nick-end labeling (TUNEL, green) and DAPI (blue) staining of the sections of 1-day post-MI hearts; 

representative images (left) and quantification (right, n=5 hearts/group). (B) Inflammation: immunofluorescence 

staining for neutrophils (anti-Ly6B, red; top: representative images, left, and quantification, right) and macrophages 

(anti-CD68, red; bottom: representative images, left, and quantification, right); DAPI (blue); n=5 hearts/group. (C)

Cellular hypertrophy: wheat germ agglutinin (WGA) staining (green) to outline cardiomyocyte; DAPI (blue); 

representative images (left) and quantification (right, n=5 hearts/group). (D) Vascularization: endothelial cell 

immunofluorescence staining (anti-CD31, red); DAPI (blue); representative images (left) and quantification (right, 

n=5 hearts/group). (E) Western blots and quantifications of phosphorylation levels of Akt-T308, GSK3β-S9, and 

eNOS-S1177 in left ventricular lysates (n=4-5 hearts/group). Data are presented as mean±SEM; statistical 

significance is calculated using two-way ANOVA with pairwise comparison in A, C, and D, independent t-test in B, 

and one-way ANOVA in E; *p<0.05 vs sham, #p<0.05 vs WT-Vehicle MI.
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Figure 4 Chen, X. et al. 

Figure 4. Endothelial PI3Kα is required for preservation of cardiac function and angiogenesis after MI. 

(A) Schematic of experimental design for testing the role of endothelial PI3Kα in post-MI remodeling using conditional 

knock-out (p110αEC) and control (p110αflx/flx littermates) mice. (B) Echocardiographic assessment of cardiac function 

at 7 days post MI: representative M-mode images, ejection fraction (EF), left ventricular end-systolic volume (LVESV), 

left ventricular end-diastolic volume (LVEDV), and wall motion score index (WMSI) (n=10 mice/group). (C) Endothelial 

apoptosis: immunofluorescence staining of endothelial cells (ECs) (CD31, red), TUNEL (green), and DAPI (blue): 

representative images (left, white arrows indicate red-green co-localization) and quantification (right, n=5 hearts/group). 

(D) Endothelial proliferation: immunofluorescence staining for ECs (CD31, green), immunofluorescence staining of 

proliferating ECs (Ki67, red), and DAPI (blue): representative images (left, white arrows indicate red-green co-localiza-

tion) and quantification (right, n=5 hearts/group). (E) Vascularization: immunofluorescence staining of ECs (CD31, red; 

top), lectin (green; middle) in vivo perfusion, and quantifications (bottom, n=5 hearts/group). (F) Western blots and 

quantifications of Akt phosphorylation in 7-day post-MI hearts (n=4-7 hearts/group). Data are presented as mean±SEM; 

statistical significance is calculated using two-way ANOVA with pairwise comparisons in B-E, and independent t-test in 

F; *p<0.05 vs sham in B and E, vs infarct in C and D, vs indicated group in F, #p<0.05 vs p110αflx/flx within the same 

treatment. 
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Figure 5 Chen, X. et al. 

Figure 5. PI3Kα activity is required to maintain Akt/eNOS signaling in endothelial cells. (A) Inhibition of PI3Kα 

by BYL719 and Akt/eNOS signaling in cultured human umbilical vein endothelial cells (HUVEC) (no VEGF; n=3 

independent experiments). (B) Effect of inhibition of PI3Kα by BYL719 on vascular endothelial growth factor (VEGF)-

induced Akt/eNOS activation in HUVEC (n=3 independent experiments). (C) Inhibition of PI3Kα by BYL719 and Akt/

eNOS signaling in human coronary artery endothelial cells (HCAEC) (no VEGF, n=4 independent experiments). (D)

Effect of inhibition of PI3Kα by BYL719 on VEGF-stimulated Akt/eNOS signaling in HCAEC (n=4 independent 

experiments). Data are presented as mean±SEM; statistical significance is calculated using one-way ANOVA; *p<

0.05 vs vehicle without VEGF, #p<0.05 vs vehicle with VEGF.
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V and propidium iodide (n=6 independent experiments). (B) Effect of BYL719 (500 nmol/L) on proliferation rate of 

HUVEC: BrdU (red) and DAPI (blue) staining (n=8 independent experiments). (C) Effects of BYL719 (500 nmol/L) 

on angiogenic sprouting in HUVECs (n=4 independent experiments). (D) Effect of BYL719 (500 nmol/L) on cell 

survival of HCAEC: flow cytometry images and quantification of staining with annexin V and propidium iodide (n=5 

independent experiments). (E) Effects of BYL719 (500 nmol/L) on proliferation rate of HCAEC: BrdU (red) and 
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Figure 7 Chen, X. et al. 

Figure 7. Role of cardiomyocyte PI3Kα at baseline and in post-MI cardiac remodeling. (A) Body weight, heart 

weight, and left ventricular weight in cardiomyomycyte-specific knockout (p110αCM) and control (littermates, 

p110αflx/flx) mice (n=9-14 mice/group). (B) Echocardiographic assessment of cardiac function at 7 days post MI: rep-

resentative M-mode images, left ventricular ejection fraction (EF), right ventricular fractional area change (FAC), left 

ventricular end-systolic volume (LVESV), and left ventricular end-diastolic volume (LVEDV) (n=10 mice/group). (C)

Kaplan-Meier survival analysis for survival rate (top) and cardiac rupture incidence (bottom) (n=13-30 mice/group). 

(D) Apoptosis: TUNEL (green) and DAPI (blue) staining: representative images (left) and quantification (right, n=4 

hearts/group). (E) Cellular hypertrophy: WGA (green) staining to outline cardiomyocytes: representative images (left) 

and quantification (right, n=5 hearts/group). (F) Western blots and quantification for Akt in left ventricle lysates from 

post-MI p110αCM and p110αflx/flx hearts (n=4-5 hearts/group). Data are presented as mean±SEM; statistical signifi-

cance is calculated using independent t-test in A and F, two-way ANOVA with pairwise comparison in B, D, and E, 

and log-rank test in C; *p<0.05 vs p110αflx/flx in A, C, and F, vs sham in B, D, and E, #p<0.05 vs p110αflx/flx MI.
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Figure 8 Chen, X. et al. 

Figure 8. Effects BYL719 on isolated adult mouse cardiomyocytes under hypoxia and schematic of the roles 

of PI3Kα in cardiomycytes and endothelial cells at baseline and post MI. (A) Western blots and quantification of 

Akt/GSK3β signaling on lysates from cardiomyocytes cultured under normoxic and hypoxic condition (n=6 hearts, 3 

independent experiments). (B) Representative images (left) and quantification of apoptotic cell death (right) of 

isolated cardiomyocyte under hypoxic condition with cyclic mechanical stretch (right, n=8 hearts, 4 independent 

experiments). (C) Representative images of F-actin (green), G-actin (red), and DAPI (blue) staining (left) and 

quantification of F/G-actin ratio (right, n=8 hearts, 4 independent experiments). (D) Schematic of the roles of PI3Kα 

in cardiomycytes and endothelial cells at baseline and post-MI: in cardiomyocyte, PI3Kα regulates survival and 

adaptive hypertrophy; in endothelial cells, PI3Kα regulates survival and angiogenesis to maintain vascular distribution 

in response to MI. Data are presented as mean±SEM; statistical significance is calculated using one-way ANOVA in  

A and B, two-way ANOVA with pairwise comparison in C; *p<0.05 vs normoxia in A and C, vs vehicle in B, #p<0.05 vs 

hypoxia-vehicle in A and C.
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Supplemental Methods 

Animal Models and Human Explanted Hearts 

Mice were bred and housed at University of Alberta, and all animal experiments were 

conducted in accordance with the Canadian Council for Animal Care guidelines and the 

Guide for the Care and Use of Laboratory Animals published by the US National 

Institutes of Health (revised 2011).  

All mice in the study were on the C57/B6 background. Wild type (WT, C57BL/6) 

mice in experiments studying the effects of pharmacological PI3Kα inhibition were 

purchased from Jackson Laboratory. BYL719 (Chemietek) or vehicle was given to 11- 

to 12-week-old WT mice in the morning for 10 day (50 mg/Kg/day, p.o.). Mouse strains 

used in the study included p110αEC and p110αCM. Mice with inducible endothelial-

specific p110α ablation (p110αEC) were generated by crossbreeding p110αflx/flx mice as 

previously described, which display PIK3CA gene (encoding p110α) with floxed 18 and 

19 exons [1], with tamoxifen-induced and Tie2 promoter-controlled Cre expression mice 

(Tie2MerCreMer). [2] Tamoxifen (Sigma-Aldrich, 80 mg/kg/day) was given to 10-week-old 

p110αEC and control littermates by intraperitoneal injection for 5 days to induce gene 

deletion in p110αEC mice, which has previously shown sparing hematopoietic cells from 

targeted gene deletion. [2] Animals were given two weeks to recover from tamoxifen 

toxicity and to allow sufficient cre-recombinase expression before experiments. Mice 

with cardiomyocyte-specific PI3Kα ablation (p110αCM) were generated by crossbreeding 

p110αflx/flx with αMHC-driven Cre (αMHCCre) mice. [3, 4] Cre-recombinase deletes exons 

18 and 19 from PIK3CA, producing a truncated p110α protein which lacks catalytic 
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activity. Homozygous littermates p110αflx/flx from each strain were used as control. Only 

male mice were used in the experiments. 

Myocardial infarction was achieved by permanently ligating the proximal left 

anterior descending artery (LAD) on WT mice after receiving 3 doses of BYL719 or 

vehicle and on about 12-week-old p110αEC, p110αCM, and control mice. The ligation of 

LAD or sham surgery was performed by a technician who was blinded to the mouse 

strains.[5] Briefly, left thoracotomy was performed on 1.5% isoflurane-anesthetized and 

intubated mice in the fourth intercostal space. After opening the pericardium and 

exposing the left ventricle, LAD was identified and encircled with a 7-0 silk. LAD was 

ligated in MI mice, while it was encircled only in sham-operated mice. Afterwards, the 

muscle and skin were closed in layers with a 6-0 silk suture. Animals were inspected at 

least twice daily before sacrificed, and survival data were recorded. Autopsy was carried 

out on each mouse found dead during the study. Mice were sacrificed with 

intraperitoneal injection of ketamine (100 mg/kg) and xylazine (10 mg/kg) cocktail, and 

the heart tissue were collected. 

Human tissue from non-failing control hearts and failing post-MI hearts were 

collected as part of the Human Organ Procurement and Exchange program (HOPE) 

and Human Explanted Heart Program (HELP) respectively, which received ethical 

approval from the Mazankowski Alberta Heart Institute and the Institutional Ethics 

Committee.[5, 6] Informed and signed consents were obtained.  
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Echocardiography and Electrocardiogram 

Noninvasive transthoracic echocardiography was performed on mice anesthetized with 

1.5% isoflurane in O2 using Vevo 3100 (Visualsonics). Conventional measurements and 

speckle-tracking strain analysis was carried out. [5, 7] Global peak systolic strain was 

calculated as the average of 6 standard anatomical segments. Non-invasive 

electrocardiogram (ECG) was carried out to evaluate the electrical activity of the heart 

on mice anesthetized with 1.5% isoflurane in O2 as described. [2] 

 

Immunofluorescence 

Immunofluorescence staining was performed using established protocols[5]. Briefly, 

optimal cutting temperature compound (OCT)-embedded tissue sections and cultured 

cells were fixed with 4% paraformaldehyde and rehydrated in wash buffer. Then, 

permeabilization with 0.1% triton X-100 and blockage with 4% Bovine Serum Albumin 

were carried out in sequence. The sections were incubated overnight at 4°C with 

primary antibody, including anti-mouse Ly-6B.2 (AbD Serotec), anti-mouse CD68 (AbD 

Serotec), anti-CD31 (BD Pharmingen), anti-Ki67 (R&D), or anti-BrdU (Bio-Rad) followed 

by incubation with secondary antibody (Invitrogen) at 37°C for one hours. After 

mounting with DAPI media (Life Technologies), the slides were used for visualization 

and imaging by fluorescence microscopy (Olympus IX81). In addition, Wheat Germ 

Agglutinin (WGA, Invitrogen) or phalloidin (Invitrogen) staining was performed to identify 

cardiomyocytes. Fluorescein-conjugated Lectin (Vectorlabs) intravital perfusion was 

performed to identify the functional vasculature. [5] Fragmented DNA of apoptotic cells 

was detected using the DeadEnd Fluorometric Terminal Deoxynucleotidyl Transferase-
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mediated dUTP Nick-End Labeling (TUNEL) System (Promega) according to 

instructions.  

 

Endothelial Cell Culture, Flow cytometry, and Bead Angiogenesis Assay 

Human umbilical vein endothelial cells (HUVECs) and human coronary artery 

endothelial cells (HCAECs, ATCC) were used between passage 3 to 7. In vascular 

endothelial growth factor (VEGF) stimulation experiment, cells were starved in basal 

medium for 5 hours including 1-hour vehicle or BYL719 incubation prior to stimulation 

with 50 ng/ml recombinant human VEGF165 (PeproTech) for 10 minutes.  Studying the 

general effects of BYL719 on Akt signaling, cells were treated with vehicle or BYL719 

for 5 hours before protein collection. Cell survival was examined on overnight vehicle- or 

BYL719-treated cell using flow cytometry (Attune NxT, Invitrogen) with annexin V and 

propidium iodide staining (Invitrogen). 

In vitro angiogenesis bead assay of HUVECs/HCAECs was performed as 

described[5]. Images were captured using a fluorescent inverted microscope (Leica). 

The number of sprouts and the length of sprouts was analyzed using image analysis 

software (ImageJ), and at least 30 beads per independent experiment were analyzed. 

 

Adult Cardiomyocyte Isolation, Culture, and Stretching 

Adult murine left ventricular cardiomyocytes were isolated from isoflurane (2%)-

anesthetized mice; and the isolated cardiomyocytes were cultured and stretched as 

described. [8, 9] Briefly, after anesthetized and heparinized a mouse, the heart was 

excised and cannulated on a Langendorff perfusion apparatus. Then, a calcium-free 
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buffer was perfused in the heart, followed by collagenase digestion. The digested 

ventricles were teased into small pieces and gently pipetted with an increasing 

concentration of CaCl2. Plated cardiomyocytes were culture with vehicle or BYL719 for 

1 hour under normoxia (2% CO2) or hypoxia (1% O2, 2% CO2) before protein collection. 

PI3Kγ inhibitor-AS252424 was used at 400 nmol/L. Cyclical mechanical stretch of 

cardiomyocytes was achieved using Flexcell FX-5000 Tension System (Flexcell 

International Corp) at 1Hz and 5% elongation for 3 hours in serum-free culture medium 

under hypoxic atmosphere. Then, cardiomyocytes were fixed in 4% paraformaldehyde 

and imaged under light microscope to assess the cell viability. TUNEL staining was 

performed to access apoptosis rate. 

 

Immunoblotting 

Immunoblotting was performed as previously described[2]. Extracted proteins from 

tissue or cells were separated by 8% to 15% sodium dodecyl sulfate polyacrylamide gel 

electrophoresis, followed by electrotransfer to polyvinylidene difluoride membranes. 

Primary antibodies, including phospho-(Thr308)/phospho-(Ser473)/total Akt, phospho-

(Thr202/Tyr204)/total p44/42 MAPK (Erk1/2), phospho-eNOS (Ser1177)/eNOS, PI3K 

p110α, phospho-(Ser9)/total GSK3β, and GAPDH (Cell Signaling Technology), were 

used in the study. Blots were visualized and analyzed using ImageQuant LAS 4000 (GE 

Healthcare). 
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Statistical Analysis 

Statistical analyses were carried out using SPSS Statistics 24 software, and statistical 

significance was defined as p<0.05 (two-sided). Continuous data were presented in 

scatter plots with mean±SEM. The differences between two independent groups were 

evaluated using independent t-test or Mann-Whitney U test after normality examination. 

Paired t-test was carried out for two paired groups. One-way ANOVA or Kruskal-Wallis 

test with pairwise comparisons were used in studies with more than two groups based 

on the normality of the data. Two-way ANOVA was used to compare the differences 

between groups with two independent variables. Repeated measures ANOVA was 

carried out in data with multiple measures. Categorical data was compared using Fisher 

exact test. Survival data were presented as the Kaplan-Meier plots, and the log-rank 

test was used to evaluate the statistical significance. 
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     Table S1. Ten the most affected genes in mice treated with BYL.  

Gene log2 
FC 

Protein / RNA Function 

Zbtb16 2.186 Zinc finger and BTB domain-

containing protein 16 

Nuclear protein involved in cell cycle 

progression and interacts with a 

histone deacetylase 

Egr1 -2.093 Early Growth Response 1 cancer suppressor gene 

Nr4a1 -2.025 Nuclear Receptor Subfamily 4 

Group A Member 1 

Translocation of the protein from the 

nucleus to mitochondria induces 

apoptosis  

Errfi1 -1.533 ERBB Receptor Feedback 

Inhibitor 1 

expression is upregulated with cell 

growth 

Xdh 1.258 xanthine dehydrogenase oxidative metabolism of purines 

Neat1 1.256 Nuclear Paraspeckle Assembly 

Transcript 1 

lncRNA (core structural component of 

the paraspeckle sub-organelles)  

Fmo2 1.164 Flavin Containing Dimethyl-

aniline Monoxygenase 2 

catalyzes the N-oxidation of some 

primary alkylamines 

Nes -1.094 Nestin intermediate filament protein (nerve 

cells) 

Dusp1 -1.071 Dual Specificity Phosphatase 1 dephosphorylate MAP kinase MAPK1/ 

ERK2 

Pim3 1.040 Pim-3 Proto-Oncogene, Serine/ 

Threonine Kinase 

overexpressed in hematological and 

epithelial tumors 

RNA-seq was performed on RNA extracted from the hearts of mice after 10-day vehicle or 
BYL719 treatment; FC, fold change. Genes with expression levels of at least 1% of maximal 
expression level in either WT-placebo or WT-BYL group and with padj < 0.1 were selected for 
analysis.  
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     Table S2. Cardiac Function in Vehicle- and BYL719-treated Mice by Echocardiography 

Mean±SEM 
Sham MI 

WT-Vehicle WT-BYL WT-Vehicle WT-BYL 

Sample Size 11 10 10 14 

HR (bpm) 446±10 496±17 420±16 493±16 # 

EF (%) 63.21±1.13 62.87±1.88 36.64±2.94 * 21.63±1.56 *# 

FAC (%) 53.75±1.04 55.46±2.42 24.95±4.01 * 9.29±1.14 *# 

WMSI 1.00±0.00 1.00±0.00 1.83±0.06 * 2.24±0.05 *# 

SV (μl) 51.54±2.25 37.01±2.19 # 41.37±2.88 * 28.89±1.12 *# 

LVESV (μl) 29.86±1.36 22.33±2.19 78.69±14.28 * 112.43±9.80 *# 

LVEDV (μl) 81.40±2.97 59.35±3.92 120.06±15.31 * 141.32±10.15 * 

LVPWd (mm) 0.66±0.02 0.68±0.02 0.62±0.03 0.37±0.03 *# 

E’/A’ 1.14±0.02 0.99±0.06 0.91±0.12 0.87±0.07 

LA Size (mm) 1.57±0.05 1.57±0.05 1.92±0.11 * 1.97±0.08 * 

Echocardiography was performed on 10-day vehicle- or BYL719-treated mice which 
received sham or MI surgery on day-3 post-treatment. HR indicates heart rate; bpm, 
beats per minute; EF, ejection fraction; FAC, fractional area change; WMSI, wall motion 
score index; SV, stroke volume; LVESV, left ventricular end-systolic volume; LVEDV, left 
ventricular end-diastolic volume; LVPWd, end-diastolic left ventricular posterior wall 
thickness; LA size, left atrial size. *p<0.05 vs sham; #p<0.05 vs WT-Vehicle in two-way 
ANOVA.  
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     Table S3. Cardiac Function in p110αEC and littermate control Mice by 

echocardiography 

Mean±SEM 
Sham MI 

p110αflx/flx p110αEC p110αflx/flx p110αEC 

Sample Size 10 10 10 10 

HR (bpm) 411±10 428±21 430±16 420±25 

EF (%) 59.69±1.17 61.98±1.99 32.29±2.34* 21.24±1.56*# 

FAC (%) 50.86±2.37 51.93±1.79 19.51±3.14* 8.17±1.78*# 

WMSI 1.00 1.00 1.86±0.07* 2.24±0.05*# 

SV (μl) 40.44±2.52 42.17±3.20 38.00±2.47 31.90±2.72* 

LVESV (μl) 27.42±1.86 26.79±3.26 85.74±10.94* 120.57±10.93*# 

LVEDV (μl) 67.86±4.11 68.96±5.98 123.73±12.75* 152.47±12.55*# 

LVPWd (mm) 0.64±0.04 0.65±0.02 0.68±0.04 0.58±0.09 

E’/A’ 1.23±0.05 1.26±0.07 0.96±0.09* 0.71±0.02*# 

LA Size (mm) 1.63±0.08 1.72±0.07 2.08±0.13* 2.34±0.17* 

Echocardiography was performed on 7-day post-surgery p110αEC and p110αflx/flx mice. 
HR indicates heart rate; bpm, beats per minute; EF, ejection fraction; FAC, fractional 
area change; WMSI, wall motion score index; SV, stroke volume; LVESV, left ventricular 
end-systolic volume; LVEDV, left ventricular end-diastolic volume; LVPWd, end-diastolic 
left ventricular posterior wall thickness; LA size, left atrial size. *p<0.05 vs sham; 
#p<0.05 vs WT-Vehicle in two-way ANOVA.  
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    Table S4. Cardiac Function in p110αCM and littermate control mice by 

echocardiography 

Mean±SEM 
Sham MI 

p110αflx/flx p110αCM p110αflx/flx p110αCM 

Sample Size 10 10 10 10 

HR (bpm) 440±13.58 503±15.25 446±14.67 444±15.25 

EF (%) 60.84±0.99 49.97±3.48 34.22±3.22 * 22.81±2.70 *# 

FAC (%) 52.26±1.63 42.60±4.05 21.61±4.23 * 15.26±3.32 * 

SV (μl) 44.04±2.61 41.11±2.02 46.53±3.22 39.10±2.70 

LVESV (μl) 28.16±1.43 43.38±4.95 99.70±14.47 * 150.97±18.54*# 

LVEDV (μl) 72.20±3.75 84.49±4.78 146.23±15.43 * 190.07±17.44*# 

LVPWd (mm) 0.65±0.03 0.56±0.02 0.63±0.05 0.62±0.02 

E’/A’ 1.19±0.04 1.07±0.05 0.81±0.06 * 0.79±0.07 * 

LA Size (mm) 1.68±0.06 1.76±0.09 1.98±0.16 2.28±0.19 

Echocardiography was performed on 7-day post-surgery p110αCM and p110αflx/flx mice. 
HR indicates heart rate; bpm, beats per minute; EF, ejection fraction; FAC, fractional area 
change; SV, stroke volume; LVESV, left ventricular end-systolic volume; LVEDV, left 
ventricular end-diastolic volume; LVPWd, end-diastolic left ventricular posterior wall 
thickness; LA size, left atrial size. *P<0.05 vs sham; #P<0.05 vs WT-Vehicle in two-way 
ANOVA.  
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Figure S1. Heart rate, PR interval, and QRS duration in mice treated with BYL719 on Day 0 (before administration), 
Day 3, and Day 10 (n=11 mice). Data are presented as mean±SEM.



Supplemental Figure 2 Chen, X. et al.

ve
h9

ve
h1

1

ve
h1

2

ve
h1

0

ve
h1

4

by
l8

by
l9

by
l1

2

by
l1

0

by
l1

3

Zbtb16
Xdh
Neat1
Fmo2
Pim3
Rhobtb1
Txnip
Depp1
Mgst1
Glul
Lrrc10
Clk1
Ptgds
Ly6c1
Nr1d1
Pnpla2
Ctgf
Tfdp2
Klf15
Gstm1
Ephx2
Nr1d2
Phyhd1
Dab2
Tuba1a
Col4a2
Ankrd23
Afdn
Col6a1
Itpkb
Col6a2
Plxnd1
Cd93
Mcam
Col6a3
Eln
Actb
Rcan1
Sacs
Igfbp5
Col4a1
Slc7a1
Sgk1
Fbn1
Tcim
Actg1
Col15a1
Itga6
Dusp1
Nes
Errfi1
Nr4a2
Egr1

-2 0 +2
raw z-score

unclassified
growth

reproduction
multi-organism process

cell proliferation
cell comunication

localization
developmental process

cellular component organization
multicellular organismal process

response to stimulus
metabolic process

biological regulation
all

Biological ProcessesB

unclassified
lipid droplet

ribosome
endosome

chromosome
microbody

vacuole
extracellular matrix

Golgi apparatus
endoplasmic reticulum

extracellular space
vesicle

cell projections
envelope

cytoskeleton
endomembrane system

mitochondrion
cytosol

membrane-enclosed lumen
protein-containing complex

nucleus
membrane

all
Cellular componentsC

unclassified
molecular adaptor activity

electron transfer activity
antioxidant activity

carbohydrate binding
chromatin binding

molecular transducer activity
lipid binding

enzyme regulator activity
transporter activity

structural molecule activity
nucleic acid binding

hydrolase activity
transferase activity
nucleotide binding

ion binding
protein binding

all

0 100 200 300
Number of Genes

Molecular FunctionD

A

Figure S2. Alteration in transcriptome of LV tissue after 10-day treatment with BYL719. (A) Heatmap of 
differential expression in left ventricle: vehicle vs BYL719 (10-day treatment). (B) Number of altered genes (X axis) 
per biological process categories using Web Gestalt Gene Set Enrichment Analysis (Gene ontology). (C) Number 
of altered genes (X axis) per cellular components categories using Web Gestalt Gene Set Enrichment Analysis 
(Gene ontology). (D) Number of altered genes (X axis) per molecular function categories using Web Gestalt Gene 
Set Enrichment Analysis (Gene ontology).



-8

-6

-4

-2

0

2

4
PC

2
 (

2
2
.5

1
%

)

-8 -6 -4 -2 0 2 4
PC1 (33.36%)

WT +Vehicle
WT + BYL

Supplemental Figure 3 Chen, X. et al.

Figure S3. Primary Component Analysis (PCA) of RNA seq expression levels in the left ventricle of WT mice 
treated with vehicle or BYL719 for 10 days.
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Figure 2A (continued):
Mouse hearts: p110�
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Figure 2A (continued):
Mouse hearts: pAkt-T308
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pGSK3�-S9 (all WT):
Figure 3E (continued):
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pAkt-T308 (all 7-day MI):
Figure 4F:
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Figure 5A:
pAkt-T308 (HUVEC):
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Figure 5A (continued):
p110� (HUVEC):
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Figure 5A (continued):
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pAkt-T308 (HUVEC):
Figure 5B:
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p110� (HUVEC):
Figure 5B (continued):
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eNOS (HUVEC):
Figure 5B (continued):
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Figure 5C:
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Figure 5C (continued):
p110� (HCAEC):
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Figure 5C (continued):
GAPDH (HCAEC):
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Figure 5D:
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Figure 5D (continued):
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Figure 7F:
pAkt-T308 (7-day MI):
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Figure 8A:
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Figure 8A (continued):

pAkt-S473 (isolated cardiomyocytes):
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Figure 8A (continued):

GAPDH (isolated cardiomyocytes):
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Abstract  

Background: PI3Kα (Phosphoinositide 3-kinase α) regulates multiple downstream 

signaling pathways controlling cell survival, growth, and proliferation and is an attractive 

therapeutic target in cancer and obesity. The clinically-approved PI3Kα inhibitor, BYL719, 

is in further clinical trials for cancer and overgrowth syndrome. However, the potential 

impact of PI3Kα inhibition on the heart and following myocardial infarction (MI) is unclear. 

We aim to determine whether PI3Kα inhibition affects cardiac physiology and post-MI 

remodeling and to elucidate the underlying molecular mechanisms. 

Methods and Results: Wildtype (WT) 12-wk old male mice receiving BYL719 (daily, p.o.) 

for 10 days showed reduction in left ventricular longitudinal strain with normal ejection 

fraction, weight loss, mild cardiac atrophy, body composition alteration, and prolonged 

QTC interval. RNASeq analysis showed gene expression changes in multiple pathways 

including extracellular matrix remodeling and signaling complexes. After MI, both p110α 

and phospho-Akt protein levels were increased in human and mouse hearts. 

Pharmacological PI3Kα inhibition aggravated cardiac dysfunction and resulted in adverse 

post-MI remodeling, with increased apoptosis, elevated inflammation, suppressed 

hypertrophy, decreased coronary blood vessel density, and inhibited Akt/GSK3β/eNOS 

signaling. Selective genetic ablation of PI3Kα in endothelial cells was associated with 

worsened post-MI cardiac function and reduced coronary blood vessel density. In vitro, 

BYL719 suppressed Akt/eNOS activation, cell viability, proliferation, and angiogenic 

sprouting in coronary and human umbilical vein endothelial cells. Cardiomyocyte-specific 

genetic PI3Kα ablation resulted in mild cardiac systolic dysfunction at baseline. After MI, 

cardiac function markedly deteriorated with increased mortality concordant with greater 
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apoptosis and reduced hypertrophy. In isolated adult mouse cardiomyocytes, BYL719 

decreased hypoxia-associated activation of Akt/GSK3β signaling and cell survival. 

Conclusions: PI3Kα is required for cell survival (endothelial cells and cardiomyocytes) 

hypertrophic response, and angiogenesis to maintain cardiac function after MI. Therefore, 

PI3Kα inhibition that is used as anti-cancer treatment, can be cardiotoxic, especially after 

MI. 

 

Highlights  

 Inhibition of PI3Kα by BYL719 worsens cardiac remodeling post myocardial infarction  

 Endothelial-specific ablation reduced coronary density  

 Cardiomyocyte-specific ablation decreased cardiac function and increased mortality 

 PI3Kα effects are mediated via Akt/GSK3β/eNOS signaling  

 

Keywords: angiogenesis / myocardial infarction / myocardial remodeling / signaling / 

PI3Kα 
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1. Introduction 

The phosphoinositide 3-kinases (PI3Ks) are a family of conserved lipid kinases that 

regulate critical intracellular signaling responsible for hypertrophy, survival, proliferation, 

and metabolism [11, 2]. PI3Kα is the functionally dominant PI3K isoform in many cell 

types and a key regulator in a wide range of cellular processes. The catalytic conversion 

of phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P2 or PIP2) to phosphatidylinositol-

3,4,5-trisphosphate (PtdIns(3,4,5)P3 or PIP3) leads to membrane recruitment of Akt, 

allowing the phosphorylation of an effector kinase, Akt, at Thr308 by PDK1. 

Subsequently, Akt phosphorylates downstream effectors and regulates various 

pathways, including glycogen synthase kinase 3β (GSK3β) and endothelial nitric oxide 

synthase (eNOS). PI3Kα signaling mediates cell survival, growth, electrophysiology and 

metabolism in different cell types [3-6][3-6].  

Due to the widespread expression and diverse roles of PI3Kα, the aberrations in 

PI3Kα signaling are associated with a broad spectrum of human diseases including 

cancer. Gain-of-function mutations of PIK3CA, the gene that encodes the p110α (catalytic 

subunit of PI3Kα), are frequent in many human tumors such as lung, head and neck, 

breast, endometrial, and cervical cancer [7].[7]. In addition, disruptions of PI3Kα signaling 

contribute to obesity, diabetes, and heart failure [8-10]. Currently, several PI3Kα inhibitors 

are in clinical trials as cancer treatment [11].[11]. One of them, BYL719 (Alpelisib), has 

demonstrated dose- and time-dependent PI3Kα inhibition in both animal and human 

studies [12-15][12-15] and is therapeutic in PIK3CA-related solid tumors and overgrowth 

syndrome in recent clinical trials [14-16].  
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Heart disease is the leading cause of death followed by cancer [17][17] and both 

are frequently present in the same patient. Following myocardial infarction (MI), cardiac 

repair and remodeling, which are the result of complex interactions of cardiomyocytes 

and vascular endothelial cells, define cardiac recovery and patient outcomes [18]. We 

and others have identified PI3Kα as a regulator of physiological hypertrophy, insulin 

signaling, ion channel activity, and contractility in cardiomyocytes [4, 19-21][4, 19-21] 

while maintaining vascular function and tone [2, 33]. However, cell-specific role of PI3Kα 

on post-MI cardiac remodeling has not been elucidated and the increased use of PI3Kα 

inhibitors in clinical practice as novel cancer therapies may result in cardiotoxicity due to 

inhibition of PI3Kα in both cardiomyocytes and endothelial cells [22, 23][22, 23]. Indeed, 

very little is known about the potential cardiotoxicity with PI3Kα inhibition. 

In the present study, we showed that BYL719 administration in mice is associated 

with reduced global left ventricular longitudinal strain, prolonged QT interval, and altered 

gene expression profile. In mice receiving BYL719, post-MI vascular density was 

reduced, hypertrophy was suppressed, and myocardial apoptosis was increased. We also 

examined cell-specific effects of the loss of PI3Kα activity in post-MI cardiac remodeling 

by studying post-MI remodeling in endothelial-specific (p110αEC) and cardiomyocyte-

specific (p110αCM) PI3Kα knockouts. We found that in endothelial cells, PI3Kα controls 

endothelial survival, proliferation, and angiogenesis, while in adult cardiomyocytes, PI3Kα 

is important for cell survival. Our study highlights the potential cardio-oncology issues 

associated with this new class of cancer therapy.  
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2. Methods 

Detailed methods used in the present study and all other supporting data are available in 

the Data Supplement. 

 

2.1 Animal Models 

All animal studies were conducted according to the Canadian Council for Animal Care 

guidelines and approved by Animal Care and Use Committee at University of Alberta. 

Wild type (WT) C57BL/6 mice were purchased from Jackson Laboratory. BYL719 (50 

mg/Kg/day, p.o., Chemietek) or vehicle was given to 11- to 12-week-old WT mice in the 

morning for 10 days. Inducible endothelial-specific PI3Kα-knockout mice (p110αEC) were 

generated by crossing p110αflx/flx mice (PIK3CA gene with floxed 18 and 19 exons) [3][3] 

with tamoxifen-induced and Tie2 promoter-controlled Cre expression mice (Tie2-

MerCreMer). Tamoxifen (80 mg/kg/day, Sigma-Aldrich) was given to 10-week-old mice 

by intraperitoneal injection for 5 days to induce endothelial-specific, floxed-exon deletion 

in p110α; this method has been previously shown to spare hematopoietic cells from 

targeted gene deletion [24, 25][24, 25]. Cardiomyocyte-specific PI3Kα-knockout mice 

(p110αCM) were generated by crossing p110αflx/flx with αMHC-driven Cre expressing mice 

[4][4]. Homozygous littermates (p110αflx/flx) of p110αEC and p110αCM mice were used as 

control. All mice were on the C57BL/6 background. Only male mice were used in the 

experiments.  

The pharmacological inhibition of PI3Kα was achieved by gavage with BYL719 (50 

mg/kg by) daily for 10 days (Figure 1A). The dosing was based on studies that confirmed 

the therapeutic effects on PI3Kα-driven tumors in mice (osteosarcoma, lung cancer, and 
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squamous cell carcinomas).[26-28] Blood glucose measured after overnight fasting 

without glucose challenge. Myocardial infarction was achieved by permanently ligating 

the proximal left anterior descending artery (LAD) of 12-week-old mice after they received 

3 doses of BYL719 [29][29]. Surgery was performed by a technician who was blinded to 

the mouse strains and treatment. Tissue collection was performed on mice anesthetized 

with ketamine (100 mg/kg) and xylazine (10 mg/kg). 

 

2.2 Human Explanted Hearts 

Human cardiac specimens from non-failing control (NFC) and failing post-MI hearts were 

obtained as part of the Human Organ Procurement and Exchange program (HOPE) and 

Human Explanted Heart Program (HELP) respectively, approved by the Mazankowski 

Alberta Heart Institute and the Institutional Ethics Committee at University of Alberta [30].  

 

2.3 Body Composition Measurement, Echocardiography and Electrocardiogram 

Body composition was measured in live, conscious mice using a NMR-MRI scanner 

(EchoMRI) [31]. Non-invasive transthoracic echocardiography was performed on mice 

anesthetized with 1.5% isoflurane using Vevo 3100 (Visualsonics). Conventional 

measurements and speckle-tracking strain analysis was carried out as previously 

described including the fractional area change (FAC) as a measure of RV systolic function 

[25][25]. Non-invasive electrocardiogram in lead I configuration was carried out as 

described [2020, 25]. 

 

Field Code Changed



Chen X et al.                                                         PI3Kα inhibition worsens heart disease 

- 8 - 
 

2.4 Endothelial Cell Culture, Flow Cytometry, and Bead Angiogenesis Assay 

Human umbilical vein endothelial cells (HUVEC) and human coronary artery endothelial 

cells (HCAEC, ATCC) were used between passage 3 to 7. BYL719 was used at indicated 

doses. Recombinant human vascular endothelial growth factor (VEGF165, PeproTech) 

was added to stimulate endothelial cell responses at 50 ng/ml. Cell survival was examined 

on overnight vehicle- or BYL719-treated cell using flow cytometry (Attune NxT, Invitrogen) 

with annexin V and propidium iodide staining (Invitrogen). In vitro 3 dimensional (3D 

spheroid) angiogenesis assays were performed on HUVEC and HCAEC as previously 

described [25]. 

 

2.5 Adult Murine Cardiomyocyte Isolation, Culture, and Stretching 

Adult murine ventricular cardiomyocytes were isolated from 2% isoflurane anesthetized 

mice. Plated cardiomyocytes were cultured with vehicle, BYL719, or PI3Kγ inhibitor-

AS252424 for 1 hour under normoxia (20% O2, 2% CO2) or hypoxia (1% O2, 2% CO2) 

before protein collection. Cyclical mechanical stretch of cardiomyocytes was achieved 

using Flexcell FX-5000 Tension System (Flexcell International Corp) at 1 Hz and 5% 

elongation for 3 hours in serum-free culture medium under hypoxic atmosphere [25][25]. 

Then, cells were collected for morphologic study. 

 

2.6 Immunofluorescence and Immunoblotting 

Immunofluorescence staining was performed using established protocols [25][25]. 

Antibodies against CD31, Ly6B, CD68, Ki67, and BrdU were used. Intravital perfusion 

with fluorescein-conjugated lectin (Vectorlabs) was performed to identify the functional 

Field Code Changed



Chen X et al.                                                         PI3Kα inhibition worsens heart disease 

- 9 - 
 

vasculature. Wheat Germ Agglutinin (WGA) or phalloidin staining was performed to 

identify cardiomyocytes. Fragmented DNA of apoptotic cells was detected using the 

DeadEnd Fluorometric Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick-End 

Labeling (TUNEL) System. Immunoblotting for various proteins was performed on left 

ventricular homogenates or cultured cell lysates as before [24, 25][24, 25].  

 

2.7 RNA Sequencing Analysis 

RNA isolation and RNA sequencing were performed as previously described.[31][32] 

Total RNAs from left ventricles (6 hearts/group) were extracted. Altered genes were 

defined by the boundary conditions: padj < 0.1 and expression level of at least 750 TPM 

(transcripts per million) for either WT-vehicle or WT-BYL group (750 is 1% of 75,000 TPM, 

which was a maximal expression level in the dataset). Data were analyzed using 

WebGestalt, Protein ANalysis THrough Evolutionary Relationships (PANTHER) 

classification system (Pantherdb.org), and Ingenuity Pathway Analysis.  

 

2.8 Statistical Analysis 

Statistical analyses were carried out using SPSS Statistics 24 software, and statistical 

significance was defined as p<0.05 (two-sided). Continuous data were presented in 

scatter plots with mean ± SEM. The differences between the two independent groups 

were evaluated using independent t-test or Mann-Whitney U test after normality 

examination. Paired t-test was carried out for two paired groups. One-way ANOVA or 

Kruskal-Wallis test with pairwise comparisons was used in studies with more than two 

groups based on the normality of the data. Two-way ANOVA was used to compare the 
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differences between groups with two independent variables. Repeated measures ANOVA 

was carried out in data with multiple measures. Categorical data were compared using 

Fisher exact test. Survival data were presented as the Kaplan-Meier plots, and the log-

rank test was used to evaluate the statistical significance.  

 

3. Results 

3.1 Inhibition of PI3Kα with BYL719 results in adverse systemic changes and 

altered myocardial gene expression  

BYL719 resulted in weight loss, leading to a decrease in body weight, and transiently 

increased blood glucose, but not fasting glucose (Figure 1A-1C). The mice displayed an 

increase in fat mass with a corresponding decrease in lean mass over the 10-day 

treatment period, associated with reduced heart and left ventricular weight (Figure 1D 

and 1E). Despite the preserved ejection fraction in BYL719-treated mice, stroke volume 

and global longitudinal strain were reduced (Table S1 and Figure 1F). The QTC interval 

was prolonged without alterations in the heart rate, PR interval, or QRS duration (Figure 

1G and Figure S1).  

To investigate the effect of pharmacological inhibition of PI3Kα at the molecular 

level in the heart, we performed gene profiling of the LV tissue from mice treated with 

placebo or BYL719 (Data Supplement Bulk-RNAseq). A total of 292 genes were changed 

after BYL719 exposure, with log2 FC (Fold Change) for the most genes in the approximate 

range of –2 to 2 (Figure 1H; heatmap of the most changed genes, Figure S2A; list of top 

10 affected genes, Table S1; principle component analysis plot, Figure S3). Gene set 

enrichment analysis showed multiple changes in categories of biological regulation, 
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metabolic processes, response to stimulus (Figure S2B); membrane and nucleus, 

protein-containing complex, (Figure S2C); protein binding, ion binding, and nucleotide 

binding (Figure S2D). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

analysis showed downregulation of pathways related to structural integrity (extracellular 

matrix (ECM)-receptor interaction, focal adhesion) metabolism of glucose and proteins 

(protein digestion and absorption, AGE-RAGE signaling), and electrical activity (Figure 1I) 

and upregulation of metabolic pathways responsible for degradation of ketones, fatty 

acids, and several amino acids (Figure 1J). Taken together, these results demonstrate 

that PI3Kα inhibition with BYL719 results in mild adverse systemic effects, altered 

myocardial gene expression and early cardiac dysfunction.  

 

3.2 PI3Kα in human and murine post MI hearts  

Left ventricular specimens from post-MI patients showed markedly increased levels of 

p110α, the catalytic subunit of PI3Kα, in the infarct and peri-infarct regions. This increase 

correlated with enhanced Akt phosphorylation in these regions compared with non-failing 

human hearts (Figure 2A). We observed similar changes in PI3Kα/Akt signaling in post-

MI murine hearts (Figure 2A) showing a conserved response in humans and mice. These 

changes suggest that the PI3Kα pathway is upregulated in response to MI and may have 

an adaptive role. To investigate this possibility, we induced MI by LAD ligation in mice 

treated with either vehicle or BYL719 (Figure 2B). BYL719 treatment decreased post-MI 

survival due to increase in non-rupture related deaths (Figure 2C). Echocardiographic 

analyses showed exacerbation of systolic dysfunction in BYL719 versus vehicle-treated 

post-MI mice, characterized by decreased ejection fraction, enlarged left ventricular 
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chamber, and worsened wall motion index (Figure 2D and Table S2). Interestingly, right 

ventricular fractional area change, a measure of RV systolic function, was also further 

compromised in the post-MI setting in response to BYL719 (Figure 2D and Table S2). 

Because myocardial apoptosis determines the severity of myocardial ischemic 

injury, we evaluated apoptosis using TUNEL staining. One-day post-MI, BYL719-

treatment increased myocardial apoptosis and elevated inflammatory cell infiltration 

compared with vehicle-treated controls (Figure 3A and 3B). In addition, BYL719 treatment 

suppressed post-MI cardiomyocyte hypertrophy and reduced coronary vascular density 

in the peri-infarct area without affecting cardiomyocyte size or vascular density of sham-

operated groups (Figure 3C and 3D). Phosphorylation of myocardial Akt (Thr308), GSK3β 

(Ser9), and eNOS (Ser1177) were reduced in BYL719-treated mice in comparison with 

vehicle-treated day 7 post-MI (Figure 3E), but levels of p110α, phospho-Akt at Ser473, 

and phospho-ERK were not altered (Figure S4). These results indicate that systemic 

PI3Kα inhibition is detrimental in the post-MI setting by curtailing protective signaling 

pathways, resulting in increased apoptosis, impaired hypertrophy, and reduced vascular 

density. 

 

3.3 Endothelial-specific PI3Kα Ablation Worsens Post-MI Remodeling  

We next examined the cell-specific role of PI3Kα signaling in endothelial cells and 

cardiomyocytes in myocardial ischemic injury. We used mice with endothelial-specific 

PI3Kα ablation (p110αEC) (Figure 4A) [25, 32, 33][25, 33, 34]. Successful ablation in 

endothelial cells was confirmed by the presence of truncated PIK3CA in the DNA 

extracted from lungs of p110αEC mice (Figure S5A). Mice with endothelial-PI3Kα ablation 
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showed comparable body weight, heart weight, and myocardial levels of p110α, phospho-

Akt, and phospho-eNOS compared to p110αflx/flx littermate controls at baseline (Figure 

S5B-C). Systolic function and global longitudinal strain were similar in p110αEC and 

p110αflx/flx hearts (Figure 4B, Figure S5D, and Table S3).  

Following MI, deterioration in systolic function worsened at 7-day and 4-week post-

MI in p110αEC hearts compared with sham; however, post-MI survival was similar (Figure 

4B, Figure S5E-F, and Table S3). Inflammatory cell infiltration was increased post-MI in 

p110αEC hearts compared with controls (Figure S5G) without altering the increase in 

cardiomyocyte size post-MI (Figure S5H). Since endothelial survival and angiogenesis is 

critical in post-infarct recovery, and PI3Kα is highly expressed in endothelial cells, we 

performed immunostaining to examine apoptosis, proliferation, and vascular density. We 

detected a higher number of apoptotic endothelial cells at day 1, decreased number of 

proliferating endothelial cells at day 3, lower vascular density, and reduced functional 

vasculature at day 7 post-MI in p110aEC mice (Figure 4C-4E). Whole-heart phospho-Akt 

levels were lower post-MI in p110αEC hearts (Figure 4F). These results indicate that 

endothelial PI3Kα is required in the infarct and peri-infarct regions of the heart to maintain 

cardiac function by supporting endothelial survival, proliferation, and angiogenesis. 

 

3.4 Inhibition of PI3Kα Impairs Angiogenesis 

To further delineate the impact of PI3Kα inhibition on endothelial cells, we examined the 

effects of BYL719 on human umbilical vein endothelial cells (HUVEC), commonly used 

primary endothelial cells, and human coronary artery endothelial cells (HCAEC), human 

coronary primary endothelial cells. We first tested the effect of BYL719 on primary 
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endothelial cells in response to VEGF. BYL719 concentration range 10-500 nmol/L was 

selected because 500 nmol/L is the lowest concentration in the plasma of patients with 

continuous BYL719 treatment [14]. In HUVEC without VEGF stimulation, BYL719 

suppressed Akt activity without affecting phospho-eNOS or p110α protein levels (Figure 

5A) while VEGF-induced Akt phosphorylation decreased in response to BYL719 

treatment in a dose-dependent manner (Figure 5B). Meanwhile, VEGF-induced eNOS 

phosphorylation was only partially suppressed by 500 nmol/L BYL719 (Figure 5B). In 

HCAEC and in the absence of VEGF, 100 nmol/L and 500 nmol/L exerted a small 

inhibition of Akt/eNOS signaling (Figure 5C) while in response to VEGF stimulation, 

BYL719 at 100 nmol/L and 500 nmol/L abolished VEGF-induced Akt activation, with 

partial inhibitory effect on eNOS phosphorylation (Figure 5D).  

BYL719 inhibition in HUVEC decreased the number of viable cells, increased 

apoptosis, and reduced proliferation (Figure 6A and 6B). The majority of HUVEC 

underwent cell death through apoptosis, not necrosis. BYL719 treatment reduced 

angiogenic sprouting illustrated by reduced number of sprouts and cumulative sprout 

length (Figure 6C). In HCAEC, both 100 nmol/L and 500 nmol/L BYL719 decreased cell 

viability, increased apoptosis, and decreased cell proliferation (Figure 6D and 6E) with 

survival analyses of HCAECs showing cell death patterns similar to HUVEC. Angiogenic 

sprouting (number of sprouts and cumulative sprout length) was inhibited by BYL719 

(Figure 6F) in HCAEC. Collectively, these results suggest that endothelial PI3Kα activity 

is required to maintain Akt/eNOS signaling in ECs, survival, proliferation, and 

angiogenesis.  
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3.5 Cardiomyocyte PI3Kα Protects Against Ischemic Injury by Inhibiting Apoptosis 

and Supporting Hypertrophy  

We next investigated the role of PI3Kα in the cardiomyocytes during MI was investigated 

using mice with cardiomyocyte-specific p110α ablation (p110αCM) (Figure S6A). The 

p110αCM mice express truncated PIK3CA gene (Figure S6B). These mice had unchanged 

body weight and displayed reduced heart weight and left ventricular weight compared to 

p110αflx/flx littermates (Figure 7A), consistent withsimilar to the findings from BYL719-

treated WT mice. p110αCM hearts showed marked reduction in p110α and basal phospho-

GSK3β levels without differences in basal phospho-Akt level (Figure S6C). 

Cardiomyocyte-specific PI3Kα deficiency exacerbated post-MI systolic dysfunction, 

enlargement of the left ventricle, and increased mortality due to cardiac rupture (Figure 

7B, 7C, and Table S4). Although p110αCM hearts showed no apoptosis at baseline, the 

number of apoptotic cells detected in p110αCM hearts at day 1 post-MI was considerably 

larger than in p110αflx/flx (Figure 7D). p110αCM hearts also displayed an increase in 

inflammatory responses after MI as shown by increased infiltration by neutrophils and 

macrophages (Figure S6D). Post-MI myocardial hypertrophy and vascular density in the 

non-infarct area was compromised in p110αCM hearts (Figure 7E and Figure S6E). 

Furthermore, Akt phosphorylation was lower in p110αCM hearts after MI (Figure 7F). 

These results suggest that (i) under normal physiological conditions, cardiomyocyte 

PI3Kα plays a role in maintaining normal cardiac function and (ii) in the post-MI setting, 

cardiomyocyte PI3Kα controls cell survival and hypertrophy.  

To elucidate acute effects of the PI3Kα activity on cardiomyocyte survival, adult 

mouse cardiomyocytes were isolated from WT mice, and treated with BYL719 in normoxic 
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and hypoxic conditions. While BYL719 had no effect on Akt activity under normoxic 

condition, it inhibited hypoxia-induced Akt activation and GSK3β phosphorylation in a 

dose-dependent manner (Figure 8A). This effect could not be attributed to potential role 

of PI3Kγ since using AS252424, a specific inhibitor of PI3Kγ, caused further inhibition of 

Akt phosphorylation without a differential effect on GSK3β phosphorylation (Figure S7). 

These results confirm that lowered GSK3β phosphorylation in the p110αCM hearts and in 

cells treated with BYL719 is directly link to decrease in PI3Kα signaling. Subjecting 

cultured isolated cardiomyocytes to 3-hr mechanical stretching under hypoxia to simulate 

in vivo conditions revealed increased cardiomyocyte apoptosis (Figure 8B). BYL719 

treatment also blunted the hypoxia-triggered increase in F/G-actin ratio (Figure 8C), a key 

control mechanism for PI3Kα [9][9], rendering cells more vulnerable to biomechanical 

stress. Taken together, PI3Kα activity plays a role in post-MI hypertrophy, cytoskeletal 

response to biomechanical stress, and cell survival by protecting against hypoxia-induced 

apoptosis.  

 

4. Discussion 

Cardiovascular disease (CVD) and cancer are the two leading causes of death worldwide 

[34, 35][35, 36] and are closely linked illustrated by cancer patients having a higher 

incidence of ischemic heart disease, and vice versa [36, 37][37, 38], which has been 

attributed to shared risk factors and, importantly, the consequence of cancer therapy 

having detrimental effects on the cardiovascular system [22, 23, 38, 39][22, 23, 39, 40]. 

Since PI3Kα is emerging as a major target for cancer therapies [12-16][12-16], knowledge 
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of PI3Kα function in healthy and post-MI hearts is critical for optimization of treatment of 

ischemic heart disease and cancer care. 

 Activation of the PI3Kα/Akt signaling pathway contributes to cancer development 

and progression as PI3Kα activity is frequently activated in a variety of common human 

tumors [7].[7]. Use of PI3Kα-specific inhibitors, such as alpelisib (BYL719) and 

serabelisib, has achieved initial success on advanced solid tumors especially in 

combination with standard anti-cancer therapy [14, 15, 40, 41]41, 42]. In this study, we 

found that BYL719 also leads to lean mass reduction and fat mass increase, which are 

associated with poor outcomes in CVD [42, 43].. The major toxic effects of PI3Kα 

inhibitors reported in clinical trials are hyperglycemia, cutaneous reactions, and 

gastrointestinal discomfort [44]. We used BYL719 concentration of 500 nmol/L for our in 

vitro studies as this is the lowest plasma concentration in patients with continuous 

BYL719 treatment [43]. In this study, we used the dose of 50 mg/kg because it produces 

robust anti-tumor response in mouse models [14][12, 26-28]. In our study, prolonged 

treatment with BYL719 resulted in transient hyperglycemia, comparable to the antitumor 

effects and burden of hyperglycemia seen in humans [14, 44]. In our study, we found that 

BYL719 also leads to transient hyperglycemia associated with lean mass reduction and 

fat mass increase, which are associated with poor outcomes in CVD [31, 45]. Treatment 

with BYL719 also resulted in reduced cardiac size, prolonged QTc interval, and 

compromised LV global longitudinal strain. Both prolonged QTC interval and lower global 

longitudinal strain have been associated with a higher risk of cardiovascular morbidity 

and mortality in patients [45, 46][46, 47]. BYL719-mediated prolongation of QTc interval 

is due to the inhibition of the late sodium current in cardiomyocytes, which increases the 
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risk of ventricular arrhythmias [11, 20][11, 20]. BYL719 also resulted in transcriptome 

changes in the heart characterized by (i) disruptions in pathways responsible for 

metabolism of glucose, fatty acids, and amino acids; (ii) downregulation of the pathways 

responsible for structural integrity (ECM-receptor interactions and focal adhesion); and 

(iii) disruptions in excitability. Taken together, our study demonstrates that the systemic 

(e.g., hyperglycemia) and cardiac-specific effects of PI3Kα inhibition predispose the heart 

to highergreater cardiovascular risks.  

We found that the PI3Kα inhibitor, BYL719, has detrimental effects on cardiac 

health and post-MI cardiac repair, suggesting that both endothelial and cardiomyocyte 

PI3Kα plays an important role in cardiac recovery after MI (Figure 8D). In both human 

and murine hearts, p110α and Akt phosphorylation were upregulated after MI suggesting 

that PI3Kα/Akt signaling is required for compensatory post-MI ventricular remodeling and 

revascularization (Figure 8D, green paths). Pharmacological inhibition of PI3Kα (Figure 

8D, red paths) inhibits both cardiomyocyte and endothelial PI3Kα leading to increased 

apoptotic cell death, decreased cardiomyocyte hypertrophy, and diminished 

angiogenesis. Reduced number of cardiomyocytes, disrupted compensatory 

hypertrophy, and diminished re-vascularization resulted in exacerbated cardiac 

dysfunction and a tendency to increased mortality after MI. Importantly, post-MI 

biventricular dysfunction was exacerbated by inhibition of PI3Kα signaling. Our findings  

are corroborated by the increased risk of heart failure in patients treated with sunitinib, a 

tyrosine kinase inhibitor with antitumor and antiangiogenic activities [47][48] and are likely 

to translate to other types of chemotherapy such as anthracycline where cell protective 

signaling plays a dominant role [43, 48][31, 49]. 
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Endothelial PI3Kα signaling is required to maintain vascular function under 

physiologic conditions with endothelial cells under unstressed physiologic conditions. 

Post-MI, endothelial-specific PI3Kα ablation resulted in (i) unchanged mortality, (ii) 

increased apoptosis and inflammation, (iii) reduced angiogenesis in infarct and peri-

infarct areas, and (iv) worsened cardiac dysfunction. Reduced angiogenesis in response 

to PI3Kα inhibition was also observed in vitro and was mediated via Akt/eNOS signaling 

consistent with a key role of eNOS in increasing capillary density post-MI and attenuating 

heart failure [49, 50][50, 51]. We observed that the cardiomyocyte PI3Kα is required to 

maintain heart weight, and normal cardiac function. Cardiomyocyte-specific PI3Kα 

ablation lead to considerable increase in mortality and was associated with enhanced 

myocardial apoptosis and inflammation, suppressed adaptive hypertrophy, reduced 

angiogenesis in non-infarct area, and worsened cardiac dysfunction. The cardioprotective 

effects seen with increased cardiac PI3Kα activity further corroborate our results [51][52].  

Clinical implications of PI3Kα inhibition. Our results suggest (i) a therapeutic 

potential of upregulation of cardiac PI3Kα to enhance post-MI cardiac repair by improving 

cell survival and angiogenesis; (ii) a concern of cardiotoxicity of PI3Kα inhibitors in healthy 

and MI hearts. Patients receiving these drugs in clinical trials need close monitoring 

especially in patients with preexisting cardiovascular disease. Further research is needed 

into the development of strategies to counteract cardiotoxic effects of PI3Kα inhibition for 

healthy and MI hearts.  
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Figure Legends 

Figure 1. Systemic effects and changes in the transcriptome with BYL719 

treatment. A. Schematic of experimental design for 10-day BYL719 administration in WT 

mice. B. Time course of body weight changes during BYL treatment (left: n=10-11 

mice/group) and body weight after 10-day treatment with vehicle or BYL719 (right: n=17-

18 mice/group). C. Blood glucose level in mice treated with vehicle or BYL719 (n=9-13 

mice/group) at 3 and 10 days. D. Alteration of body composition in mice after 10-day 

treatment with vehicle or BYL719 (n=9 mice/group). E. Heart weight and left ventricular 

weigh in mice after 10-day treatment with vehicle or BYL719 (n=16 mice/group). F. 

Representative M-mode images, ejection fraction (EF) (n=10 mice/group), and left 

ventricular longitudinal strain analysis (n=7 mice/group) in mice after 10-day treatment 

with vehicle or BYL719. G. QTc interval in mice treated with BYL719 on Day 0 (before 

administration), Day 3, and Day 10 (n=11 mice). H. Volcano plot of gene expression 

changes due 10-day treatment with BYL719. Blue symbols: altered genes defined by the 

boundary conditions (p < 0.1 and expression levels for WT-vehicle or WT-BYL of at least 

1% of maximal expression level, 75,000 TPM). Grey symbols: genes that did not satisfy 

boundary conditions. I. Over-representation analysis of upregulated genes within KEGG 

(Kyoto Encyclopedia of Genes and Genomes) pathways displayed as an enrichment ratio 

(x axis). J. Over-representation analysis of downregulated genes within KEGG pathways 

displayed as an enrichment ratio (X-axis). Data are presented as mean±SEM; statistical 

significance is calculated using repeated measures ANOVA with pairwise test in B and 

G; independent t-test in B, D, E, and F; one-way ANOVA in C. *p<0.05 vs WT-Vehicle 
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group in B and D-F, vs fasting in C, and vs day 0 in F; #p<0.05 vs WT-Vehicle (1 h post 

treatment) in C. 

 

Figure 2. Alterations in PI3Kα pathway in human and murine hearts post MI and the 

effect of BYL719 on post-MI mortality and cardiac function. A. Protein levels of p110α 

and phosphorylation levels of Akt in control (non-failing control (NFC) or Sham) and post-

MI hearts (n=4-5 hearts/group). B. Schematic of experimental design for testing the effect 

of BYL719 treatment on post-MI remodeling. C. Kaplan-Meier survival curve (left) and 

distribution of causes of death (right) in post-MI mice treated with vehicle or BYL719 (n=26 

mice/group) (p=0.065). D. Echocardiographic assessment of cardiac function at 7 days 

post MI: representative M-mode images, left ventricular ejection fraction (EF), right 

ventricular fractional area change (FAC), left ventricular end-systolic volume (LVESV), 

left ventricular end-diastolic volume (LVEDV), and wall motion score index (WMSI) in 

mice treated with vehicle or BYL719 (n=10-14 mice/group). Data are presented as 

mean±SEM; statistical significance is calculated using one-way ANOVA in A, log-rank 

test and fisher exact test in C, and two-way ANOVA with pairwise test in D; *p<0.05 vs 

NFC or sham, #p<0.05 vs WT-Vehicle 7-day MI. 

 

Figure 3. BYL719 and post-MI ventricular remodeling. A. Apoptosis: terminal 

deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL, green) and 

DAPI (blue) staining of the sections of 1-day post-MI hearts; representative images (left) 

and quantification (right, n=5 hearts/group). B. Inflammation: immunofluorescence 

staining for neutrophils (anti-Ly6B, red; top: representative images, left, and 
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quantification, right) and macrophages (anti-CD68, red; bottom: representative images, 

left, and quantification, right); DAPI (blue); n=5 hearts/group. C. Cellular hypertrophy: 

wheat germ agglutinin (WGA) staining (green) to outline cardiomyocyte; DAPI (blue); 

representative images (left) and quantification (right, n=5 hearts/ group). D. 

Vascularization: endothelial cell immunofluorescence staining (anti-CD31, red); DAPI 

(blue); representative images (left) and quantification (right, n=5 hearts/group). E. 

Western blots and quantifications of phosphorylation levels of Akt-T308, GSK3β-S9, and 

eNOS-S1177 in left ventricular lysates (n=4-5 hearts/group). Data are presented as 

mean±SEM; statistical significance is calculated using two-way ANOVA with pairwise 

comparison in A, C, and D, independent t-test in B, and one-way ANOVA in E; *p<0.05 

vs sham, #p<0.05 vs WT-Vehicle MI. 

 

Figure 4. Endothelial PI3Kα is required for preservation of cardiac function and 

angiogenesis after MI. A. Schematic of experimental design for testing the role of 

endothelial PI3Kα in post-MI remodeling using conditional knock-out (p110αEC) and 

control (p110αflx/flx littermates) mice. B. Echocardiographic assessment of cardiac 

function at 7 days post MI: representative M-mode images, ejection fraction (EF), left 

ventricular end-systolic volume (LVESV), left ventricular end-diastolic volume (LVEDV), 

and wall motion score index (WMSI) (n=10 mice/group). C. Endothelial apoptosis: 

immunofluorescence staining of endothelial cells (ECs) (CD31, red), TUNEL (green), and 

DAPI (blue): representative images (left, white arrows indicate red-green co-localization) 

and quantification (right, n=5 hearts/group). D. Endothelial proliferation: 

immunofluorescence staining for ECs (CD31, green), immunofluorescence staining of 



Chen X et al.                                                         PI3Kα inhibition worsens heart disease 

- 32 - 
 

proliferating ECs (Ki67, red), and DAPI (blue): representative images (left, white arrows 

indicate red-green co-localization) and quantification (right, n=5 hearts/group). E. 

Vascularization: immunofluorescence staining of ECs (CD31, red; top), lectin (green; 

middle) in vivo perfusion, and quantifications (bottom, n = 5 hearts/group). F. Western 

blots and quantification of Akt phosphorylation in 7-day post-MI hearts (n=4-7 

hearts/group). Data are presented as mean±SEM; statistical significance is calculated 

using two-way ANOVA with pairwise comparisons in B-E, and independent t-test in F; 

*p<0.05 vs sham in B and E, vs infarct in C and D, vs indicated group in F, #p<0.05 vs 

p110αflx/flx within the same treatment.  

 

Figure 5. PI3Kα activity is required to maintain Akt/eNOS signaling in endothelial 

cells. A. Inhibition of PI3Kα by BYL719 and Akt/eNOS signaling in cultured human 

umbilical vein endothelial cells (HUVEC) (no VEGF; n=3 independent experiments). B. 

Effect of inhibition of PI3Kα by BYL719 on vascular endothelial growth factor (VEGF)-

induced Akt/eNOS activation in HUVEC (n=3 independent experiments). C. Inhibition of 

PI3Kα by BYL719 and Akt/eNOS signaling in human coronary artery endothelial cells 

(HCAEC) (no VEGF, n=4 independent experiments). D. Effect of inhibition of PI3Kα by 

BYL719 on VEGF-stimulated Akt/eNOS signaling in HCAEC (n=4 independent 

experiments). Data are presented as mean±SEM; statistical significance is calculated 

using one-way ANOVA; *p<0.05 vs vehicle without VEGF, #p<0.05 vs vehicle with VEGF.  

 

Figure 6. PI3Kα activity is required for endothelial cell survival, proliferation, and 

angiogenesis. A. Effect of BYL719 (500 nmol/L) on cell survival of HUVEC: flow 
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cytometry images and quantification of staining with annexin V and propidium iodide (n=6 

independent experiments). B. Effect of BYL719 (500 nmol/L) on proliferation rate of 

HUVEC: BrdU (red) and DAPI (blue) staining (n=8 independent experiments). C. Effects 

of BYL719 (500 nmol/L) on angiogenic sprouting in HUVEC (n=4 independent 

experiments). D. Effect of BYL719 (500 nmol/L) on cell survival of HCAEC: flow cytometry 

images and quantification of staining with annexin V and propidium iodide (n=5 

independent experiments). E. Effects of BYL719 (500 nmol/L) on proliferation rate of 

HCAEC: BrdU (red) and DAPI (blue) staining (n=6 independent experiments). F. Effects 

of BYL719 (500 nmol/L) on angiogenic sprouting in HCAEC (n=4 independent 

experiments). Data are presented as mean±SEM; statistical significance is calculated 

using independent t-test in A-C, one-way ANOVA in D-F; *p<0.05 vs vehicle.  

 

Figure 7. Role of cardiomyocyte PI3Kα at baseline and in post-MI cardiac 

remodeling. A. HeartBody weight, heart weight, and left ventricular weight in 

cardiomyocyte-specific knockout (p110αCM) and control (littermates, p110αflx/flx) mice 

(n=9-14 mice/group). B. Echocardiographic assessment of cardiac function at 7 days post 

MI: representative M-mode images, left ventricular ejection fraction (EF), right ventricular 

fractional area change (FAC), left ventricular end-systolic volume (LVESV), and left 

ventricular end-diastolic volume (LVEDV) (n=10 mice/group). C. Kaplan-Meier survival 

analysis for survival rate (top) and cardiac rupture incidence (bottom) (n=13-30 

mice/group). D. Apoptosis: TUNEL (green) and DAPI (blue) staining: representative 

images (left) and quantification (right, n=4 hearts/group). E. Cellular hypertrophy: WGA 

(green) staining to outline cardiomyocytes: representative images (left) and quantification 
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(right, n=5 hearts/group). F. Western blots and quantification for Akt in left ventricle 

lysates from post-MI p110αCM and p110αflx/flx hearts (n=4-5 hearts/group). Data are 

presented as mean±SEM; statistical significance is calculated using independent t-test in 

A and F, two-way ANOVA with pairwise comparison in B, D, and E, and log-rank test in 

C; *p<0.05 vs p110αflx/flx in A, C, and F, vs sham in B, D, and E, #p<0.05 vs p110αflx/flx MI.  

 

Figure 8. Effects BYL719 on isolated adult mouse cardiomyocytes under hypoxia 

and schematic of the roles of PI3Kα in cardiomyocytes and endothelial cells at 

baseline and post MI. A. Western blots and quantification of Akt/GSK3β signaling in 

lysates from cardiomyocytes cultured under normoxic and hypoxic condition (n=6 hearts, 

3 independent experiments). B. Representative images (left) and quantification of 

apoptotic cell death (right) of isolated cardiomyocyte under hypoxic condition with cyclic 

mechanical stretch (right, n=8 hearts, 4 independent experiments). C. Representative 

images of F-actin (green), G-actin (red), and DAPI (blue) staining (left) and quantification 

of F/G-actin ratio (right, n=8 hearts, 4 independent experiments). D. Schematic of the 

roles of PI3Kα in cardiomyocytes and endothelial cells at baseline and post-MI: in 

cardiomyocyte, PI3Kα regulates survival and adaptive hypertrophy; in endothelial cells, 

PI3Kα regulates survival and angiogenesis to maintain vascular distribution in response 

to MI. Data are presented as mean±SEM; statistical significance is calculated using one-

way ANOVA in A and B, two-way ANOVA with pairwise comparison in C; *p<0.05 vs 

normoxia in A and C, vs vehicle in B, #p<0.05 vs hypoxia-vehicle in A and C. 


