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PI3Kα-regulated gelsolin activity is a critical
determinant of cardiac cytoskeletal remodeling
and heart disease
Vaibhav B. Patel 1,2,13, Pavel Zhabyeyev 1,2, Xueyi Chen1,2, Faqi Wang1,2, Manish Paul3, Dong Fan2,4,

Brent A. McLean2,4, Ratnadeep Basu2,4, Pu Zhang2,4, Saumya Shah1,2, John F. Dawson5,6, W. Glen Pyle6,7,

Mousumi Hazra 8, Zamaneh Kassiri2,4, Saugata Hazra9,10, Bart Vanhaesebroeck11,

Christopher A. McCulloch 12 & Gavin Y. Oudit1,2,4

Biomechanical stress and cytoskeletal remodeling are key determinants of cellular home-

ostasis and tissue responses to mechanical stimuli and injury. Here we document the

increased activity of gelsolin, an actin filament severing and capping protein, in failing human

hearts. Deletion of gelsolin prevents biomechanical stress-induced adverse cytoskeletal

remodeling and heart failure in mice. We show that phosphatidylinositol (3,4,5)-triphosphate

(PIP3) lipid suppresses gelsolin actin-severing and capping activities. Accordingly, loss of

PI3Kα, the key PIP3-producing enzyme in the heart, increases gelsolin-mediated actin-

severing activities in the myocardium in vivo, resulting in dilated cardiomyopathy in response

to pressure-overload. Mechanical stretching of adult PI3Kα-deficient cardiomyocytes disrupts

the actin cytoskeleton, which is prevented by reconstituting cells with PIP3. The actin

severing and capping activities of recombinant gelsolin are effectively suppressed by PIP3.

Our data identify the role of gelsolin-driven cytoskeletal remodeling in heart failure in which

PI3Kα/PIP3 act as negative regulators of gelsolin activity.
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Heart failure (HF) is driven by a complex series of signaling
and injury pathways that lead to maladaptive cardiac
remodeling1,2. Hypertension, which leads to increased

afterload and biomechanical stress on the heart, is the most
important cause of HF2,3. Biomechanical stress is converted to
intracellular signals through mechanotransduction processes4–6;
remodeling of the cytoskeleton is a central feature of these
processes. However, the regulation of these processes
and their contribution to HF is poorly understood. Gelsolin is a
Ca2+-regulated actin filament severing and capping protein, that
is widely expressed in a variety of tissues including the heart,
brain, immune cells, and various cancer tissues7. Importantly,
gelsolin favors actin depolymerization by virtue of both its actin-
severing activity and its ability to cap the barbed ends of actin
filaments, resulting in reduced actin polymerization. Gelsolin has
a high-positive charge and contains multiple binding sites for Ca2
+ and phosphatidylinositol lipids7,8.

Phosphoinositide 3-kinase (PI3K) activity plays a key role in
cell signaling, cell survival, and growth and modulates myocardial
contractility9–11. Among the eight isoforms of PI3K, the class I
PI3Ks isoforms, p110α, β, γ, and δ, which occur in a complex
with a regulatory subunit (the complexes are further referred to as
PI3Kα, PI3Kβ, PI3Kγ, and PI3Kδ), convert phosphatidylinositol
(4,5)-bisphosphate (PIP2) lipid to phosphatidylinositol (3,4,5)-
trisphosphate (PIP3). Whereas p110α and p110β show a broad
tissue distribution, the expression of p110γ and p110δ is highly
enriched in leukocytes, with low levels expressed in other tis-
sues12. PIP3 is degraded to PIP2 by the phosphatase and tensin
homolog (PTEN) lipid phosphatase10. In the heart, both PI3Kα
and PI3Kγ control distinct aspects of cardiac structure and
function9,10,13–15. Exercise and agonizts known to activate PI3Kα
are linked to protection from HF16,17 while the loss of cardio-
myocyte PTEN and enhanced PI3Kα action10 protect the heart
from damage caused by biomechanical stress18.

Using a combination of explanted human and canine hearts,
genetic mouse models, computer modeling, and biochemical
studies, we identify gelsolin-mediated actin cytoskeletal remo-
deling as a critical response to biomechanical stress-induced
mechanotransduction and in the pathogenesis of HF. We show
that gelsolin’s severing activity is inhibited by the PI3Kα product,
PIP3, in response to stress-induced cardiac mechanotransduction
thereby identifying a central regulatory mechanism of gelsolin’s
action. We also highlight the importance of biomechanical stress-
induced cytoskeletal remodeling as an essential response involved
in adaptive cardiac remodeling.

Results
Loss of gelsolin reverses cytoskeletal remodeling and HF.
To screen for novel pathogenic pathways of HF, we utilized
explanted failing human hearts with dilated cardiomyopathy
(DCM) and assessed the impact of mechanical unloading by
the use of left-ventricular (LV) assist devices (LVAD) (Fig. 1a).
We found that disease progression in human DCM, as measured
by LV ejection fraction (LVEF), is linked to greater gelsolin
actin-depolymerizing activity (Fig. 1b and Supplementary
Fig. 1a). Interestingly, LVAD therapy improved adverse cytos-
keletal remodeling as illustrated by normalization of a decreased
F/G-actin ratio and restored the increased actin-depolymerizing
activity to basal values (Fig. 1c–f, Supplementary Fig. 1b,
Supplementary Data 1). These results illustrate the key sensitivity
of gelsolin to mechanical unloading and its relevance in human
HF. Canine hearts with naturally occurring DCM showed a
similar increase in actin-depolymerizing activity as seen in
human DCM (Fig. 1f–g and Supplementary Data 1) implying a
conserved mechanism for DCM. Given that gelsolin is a major
mediator of actin cytoskeleton remodeling, we hypothesized that
this protein could be a critical mediator of HF (Fig. 1h and
Supplementary Fig. 2a). In response to advanced pressure-

overload, gelsolin-knockout (GSNKO) mice, which do not show
any detectable difference in the normal state as compared to wild-
type (WT) mice, had markedly reduced HF-related mortality
compared with WT mice (Fig. 1i), correlating with reduced
ventricular dilation (Fig. 1j) and pulmonary edema (Fig. 1k and
Supplementary Data 1). Echocardiographic analysis revealed
marked diastolic and systolic dysfunction characteristic of
advanced HF in pressure-overloaded WT mice, which were
markedly attenuated in GSNKO mice (Fig. 1l, m, Supplementary
Fig. 3 and Supplementary Data 1). We also performed load-
independent invasive pressure–volume loop analysis which
demonstrated a marked protective effect of gelsolin deficiency
against the progression to advanced HF in GSNKO mice com-
pared with WT mice (Fig. 1n–o, Supplementary Table 1 and
Supplementary Data 1).

Deletion of gelsolin clearly mitigated pressure-overload
induced pathological cardiac remodeling. Myocardial fibrosis
and pro-fibrotic gene expression were reduced (Fig. 2a–d,
Supplementary Fig. 4a, b and Supplementary Data 1), and α-
smooth muscle actin (α-SMA) levels were attenuated (Supple-
mentary Fig. 4c and Supplementary Data 1) suggesting reduced
activation of fibroblast in gelsolin-deficient hearts in response to
pressure overload. Myocardial hypertrophy and fetal gene
reprogramming in response to pressure overload-induced
biomechanical stress (Fig. 2e–g, Supplementary Fig. 4d and
Supplementary Data 1) were also mitigated in gelsolin-deficient
hearts. In response to pressure-overload, WT cardiomyocytes
showed decreased contractility and relaxation (Fig. 2h–j and
Supplementary Data 1), associated with decreased F/G-actin ratio
(Fig. 2k, l and Supplementary Data 1) and increased actin-
depolymerizing activity (Fig. 2m and Supplementary Data 1).
In contrast, loss of gelsolin preserved cardiomyocyte function
and F/G-actin ratio, consistent with a lack of increase in actin-
depolymerizing activity (Fig. 2k–m). The preserved cytoskeletal
architecture seen in pressure-overloaded GSNKO hearts was
associated with dampened upregulation of the N-cadherin and
β-catenin proteins at the intercalated discs (Supplementary
Fig. 5 and Supplementary Data 1), reflecting enhanced adaptive
mechanotransduction (Supplementary Fig. 5 and Supplementary
Data 1). Affinity purified total proteins (after gelsolin immuno-
precipitation) from pressure-overloaded WT hearts showed a
marked reduction of actin-depolymerizing activity (Fig. 2n
and Supplementary Data 1), documenting that gelsolin is a
dominant actin-depolymerizing protein in the heart. To under-
stand the role of cardiomyocyte-specific gelsolin in cardiac
remodeling, we isolated and stretched adult cardiomyocytes from
WT and GSNKO hearts. Gelsolin-null cardiomyocytes showed
greater viability after 24 h stretch that was associated with a
greater increase in actin polymerization (Fig. 2o–q and
Supplementary Data 1). Taken together, our data demonstrate
that deletion of gelsolin protects from advanced HF and uncover
a critical role of adverse actin cytoskeletal remodeling in the
pathogenesis of HF.

Modeling interaction between gelsolin and phosphoinositides.
To assess the effects of PIP2 and PIP3, substrate and product
of the PI3Kα catalytic activity, respectively, on the gelsolin
actin-depolymerizing activity, we performed a lysate-free actin-
depolymerization assay. Interestingly, equimolar PIP2 and
PIP3 showed identical inhibition of gelsolin in a lysate-free
assay (Fig. 3a and Supplementary Data 1). Gelsolin is composed
of six domains, designated (from the N-terminus) as G1–G6
(Fig. 3b), and contains multiple phosphatidylinositol binding
sites19,20. In silico modeling of gelsolin–PIP2 complex using
comparative homology approach suggested that for human
gelsolin, PIP2 binds with Lys166, Arg168, Arg169, Arg172 in
the G1, G2 sub-domains, Glu263 in the G2–G3 linker in the
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N-terminal domain, and with residues in three C-terminal sub-
domains, G4, G5, and G6 (Fig. 3c, d). Comparison of the binding
and molecular interactions of the N- and C-terminal domains of
human gelsolin with the PIP2 and PIP3 lipids, suggested that,
compared to PIP2, PIP3 may have more binding partners in both
the N- and C-terminal domains of gelsolin. Indeed, there are five
additional H-bond interactions in the PIP3-bound N-terminus of

gelsolin compared to the PIP2-bound complex, with PIP3
adopting 12 extra H-bonds compared to PIP2 in the C-terminal
domain (Supplementary Table 2). Importantly, PIP3 showed
multiple unique additional interactions including the interaction
of the 3′ phosphate group of the inositol ring with Gln349 in the
G3 sub-domain and the nonpolar aliphatic Leu657, and three
H-bonds with Asp705 (Fig. 3e, f; Supplementary Table 2).
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Fig. 1 Relationship between gelsolin and adverse cytoskeletal remodeling in DCM and in biomechanical stress-induced HF. a Schematic showing
pathogenic and reverse remodeling process. Pathogenic remodeling in response to chronic injury leading to ventricular dilation, resulting in HF with
reduced EF. LVAD placement results in reverse myocardial remodeling and improved cardiac function. b LVEF inversely correlates with myocardial gelsolin
actin-depolymerizing activity in humans with DCM; n= 20 DCM hearts; age 52.3 ± 2.49 y; 16 male/4 female. c LV end-diastolic dimensions (LVEDD) from
patients with DCM showing cardiac reverse remodeling in response to LVAD placement. d–g Representative images of F- and G-actin staining (d), F-actin
to G-actin ratio (e), and actin-depolymerizing activity in human (f) and canine (g) hearts showing increased actin depolymerization in DCM samples
compared with NFC. LVAD placement reduced actin-depolymerizing activity and recovered F to G-actin ratio. h Schematic showing the role of gelsolin
in actin depolymerization. i Kaplan–Meier survival curve showing markedly increased mortality in response to pressure overload for 18 weeks in WT
mice. Loss of gelsolin significantly decreased mortality in response to pressure overload. jMasson trichrome staining showing increased ventricular dilation
in WT mice, which was attenuated in GSNKO mice. k Lung water content showing increased pulmonary edema in pressure-overloaded WT mice,
which was attenuated in the GSNKO mice. l–o M-mode echocardiography images (l), quantification of LVEF (m), representative PV loop images (n),
and dp/dtmax/EDV (load-independent index of systolic function; o) showing severe HF with EF in WT mice in response to pressure overload-induced
biomechanical stress. Loss of gelsolin markedly preserved cardiac function. Data represent means ± s.e.m. *P < 0.05 compared with the respective control
groups (NFC or Sham), #P < 0.05 compared with respective WT—9 Wk or 18 week TAC group as determined by unpaired two-tailed Student’s t test (c, g)
and one-way ANOVA analysis (e, f, k, m, o). $P < 0.05 for Kaplan–Meir survival analysis (i) as determined by log-rank test. Biological replicates: n= 20
(b), n= 8 (c–e, n–o), n= 6 (g), n= 50 (i), n= 4 (j) and n= 12 (k–m). Scale bars show 25 µm (d), 1 mm (j), 2 mm (y-axis of l), and 200ms (x-axis of l)

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07812-8 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:5390 | https://doi.org/10.1038/s41467-018-07812-8 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


We next compared the molecular interaction of PIP2 and PIP3
with the N- and C-terminal domains of gelsolin using the
trajectory obtained from molecular dynamics simulation (Sup-
plementary Table 3). When PIP2 is bound to the gelsolin N- and
C-terminal domains, the length of the various H-bonds fluctuates
rapidly throughout the simulation, indicative of their instability
(Supplementary Movies 1–2). In contrast, when PIP3 is
complexed with gelsolin, there are a greater number of stable
hydrogen bonds: an oxygen atom from one of the terminal
phosphates of PIP3 forms two hydrogen bonds with Gln322 in
the N-terminus of gelsolin, which remained stable throughout the

trajectory (Supplementary Movie 3); C-terminal residues such as
Arg131 and Lys223 form stable hydrogen bonds with PIP3
throughout the simulation (Supplementary Movie 4). The relative
dynamics of PIP2 and PIP3 binding illustrate that PIP2 binds
slightly towards the protein surface compared to PIP3, which
instead remains bound within a region surrounded compactly
with a greater number of residues in both the N- and C-terminal
domains of gelsolin (Supplementary Movies 1–4).

Biochemical and cellular effects of PIP3. We next studied the
biochemical effects of PIP3 and PIP2 on gelsolin’s depolymerizing
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Fig. 2 Loss of gelsolin attenuates pressure overload-induced cardiac remodeling and adverse cytoskeletal remodeling. a, b Histological analyses by PSR (a)
staining showing increased myocardial fibrosis (b) in WT mice which were attenuated in GSNKO mice. c, d Taqman real-time PCR analyses showing
increased mRNA expression of pro-collagen-I α1 (c) and pro-collagen-III α1 (d) in WT mice in response to pressure overload-induced biomechanical stress.
Loss of gelsolin resulted in attenuation of pressure overload-induced mRNA expression of these extracellular matrix proteins. e–g Taqman real-time PCR
analyses showing attenuation of pressure overload-induced increase in mRNA expression of cardiac disease markers including ANF (e), BNP (f), and β-
MHC (g) in GSNKO mice compared with the WT mice at 9 and 18 weeks postsurgery. h–j Single cardiomyocyte contractility measurements (h) showing
attenuation of decreased myofilament FS (i) and ±dL/dt (j) in cardiomyocytes isolated from GSNKO LVs compared with WT LVs in response to pressure
overload for 9 weeks. k–m Representative images of F- and G-actin staining (k), F- to G-actin ratio (l), and actin-depolymerizing activity (m) showing
increased actin depolymerization in WT hearts in response to pressure overload, whereas loss of gelsolin resulted in attenuation of actin-depolymerizing
activity leading to increased F- to G-actin ratio. n Immunoprecipitation of gelsolin from WT—9 weeks TAC heart tissue homogenate resulting in marked
attenuation of actin-depolymerizing activity. o–q Representative phase-contrast images (o) and quantification of viable cardiomyocytes (p) showing
increased viability in GSNKO cardiomyocytes in response to 24-h cyclical stretch. Loss of gelsolin also resulted in greater increase F to G-actin ratio in
response to 24-h cyclical stretch (q). In input, S supernatant from immunoprecipitate experiment. Data represent means ± s.e.m. *P < 0.05 compared with
the respective sham group, #P < 0.05 compared with corresponding WT—9 Wk or 18 Wk TAC group as determined by unpaired two-tailed Student’s t test
(n) and one-way ANOVA analysis (b–g, i, j, l, m, p, q). Biological replicates: n= 4 (a, b), n= 10 (c–g), n= 6 (h–j), n= 4 (k–m), and n= 3 (o–q). For in vitro
experiments, each biological replicate was mean of technical replicates (o–q); only biological replicates are plotted and used for statistics. Scale bars show
25 µm (a, k) and 100 µm (o)
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activity on actin. We carried out a concentration-dependent
actin-depolymerizing activity by recombinant porcine gelsolin
(rpGSN) confirming the utility of the in vitro assay system
(Fig. 4a, Supplementary Fig. 6a and Supplementary Data 1). In an
actin-depolymerizing assay using GSNKO myocardial tissue
lysate, spiked with recombinant porcine or human gelsolin
(rhGSN), both PIP3 and PIP2 induced a marked suppression of
actin-depolymerizing activity (Fig. 4b, c, Supplementary Fig. 6b
and Supplementary Data 1). While the presence of a PTEN
inhibitor preserved PIP3 ability to inhibit gelsolin activity
(Fig. 4b, c, Supplementary Fig. 6b and Supplementary Data 1),
pre-incubation of the myocardial tissue lysate with the PI3Kα-
specific inhibitor, BYL-719, blocked 80% of the PIP2-mediated
inhibition of gelsolin actin-depolymerizing activity, without
affecting the effects of PIP3 (Fig. 4d, e). These data show that
PI3Kα-mediated generation of PIP3 is essential for inhibition of
gelsolin by PIP2 in myocardial tissue. Since gelsolin also potently
caps actin filaments, we next assessed the actin polymerization
using GSNKO myocardial tissue lysate, spiked with gelsolin. This
assay showed increased actin polymerization (Fig. 4f, g and
Supplementary Data 1), suggesting inhibition of gelsolin actin-
capping activity by PIP3 in the presence of a PTEN inhibitor. As
was observed with the actin-depolymerizing activity of gelsolin,
pre-incubation of the tissue lysate with BYL-719, partially blocked
the PIP2-mediated inhibition of gelsolin actin-capping activity,
without affecting the effects of PIP3 (Fig. 4h and Supplementary
Data 1).

To elucidate the cellular effects of PIP3 on gelsolin activity, we
isolated adult cardiomyocytes and subjected them to cyclical
stretch-induced biomechanical stress (Fig. 4i). We assessed the
structural arrangements of cytoskeletal actin filaments using F-
actin and G-actin double staining measured by confocal
microscopy as an index of relative actin polymerization
levels21,22. Biomechanical stress increased actin-depolymerizing
activity and reduced the F/G-actin ratios in cardiomyocytes
isolated from two different genetic murine models with reduced
PI3Kα activity (PI3KαDN (αDN) and PI3Kαflx/flx α-MHC-Cre
(αCre)) as compared to WT controls (Fig. 4j–l and Supplemen-
tary Data 1). The addition of PIP3 micelles to these cells, along
with PBP-10, a PIP2-binding peptide which sequesters PIP2,
resulted in increased intracellular PIP3 levels, as assessed by
immunofluorescence (IF) staining using a specific antibody to
PIP3 (Fig. 4m). Importantly, this PIP3 prevented these inhibitory

effects of p110α inactivation, indicative of a key role of PI3Kα
(p110α)-generated PIP3 in the regulation of cytoskeletal remo-
deling in response to biomechanical stress (Fig. 4j–l and
Supplementary Data 1). Importantly, IF staining also showed
spatial colocalization between gelsolin and PIP3, which was
predominantly at the cell periphery (Fig. 4m).

Immunoprecipitates of gelsolin from murine and human
myocardial tissue contained immunoreactivity for p110α, but
not for p110β, the other broadly expressed class I PI3K catalytic
subunit (Fig. 5a, b). Reciprocal co-immunoprecipitation using
antibodies against p110α or p110β confirmed an interaction
between gelsolin and p110α, but not p110β (Fig. 5a, b). Double IF
staining for p110α and gelsolin in murine and human hearts
confirmed a spatial colocalization between these proteins (Fig. 5c,
d and Supplementary Fig. 7). Following pressure-overload, p110α
showed increased translocation to the intercalated discs, key
subcellular areas involved in sensing biomechanical stress in the
heart (Fig. 5e). Taken together, these results highlight a key
regulatory role of the PI3Kα-gelsolin complex in mechanotrans-
duction, with the marked decrease in p110α levels in human and
canine DCM hearts further suggesting a causal role in HF most
likely due to a reduced PIP3-mediated suppression of gelsolin
activity (Fig. 5f, g and Supplementary Data 1).

We next characterized two different transgenic mice selectively
lacking p110α activity in cardiomyocytes (αDN and αCre), and
WT controls (WT-Ctrl) using a model of pressure-overload
mediated HF (Supplementary Fig. 2B). WT hearts displayed an
intact arrangement of intracellular actin filaments, but the
filaments were largely disorganized and interrupted in pressure-
overloaded PI3Kα mutant hearts (Fig. 5h, i and Supplementary
Data 1), correlating with a marked increase in actin-
depolymerizing activity which could be suppressed by the
addition of PIP3 (Fig. 5j and Supplementary Data 1). In contrast,
pressure-overloaded PI3Kα mutant hearts showed disrupted
intracellular filamentous actin, with decreased cardiomyocyte
contractility and relaxation compared to WT hearts (Fig. 5k–n
and Supplementary Data 1). Importantly, loss of p110α only
affected the cytoskeletal F-actin (microfilaments) and not the
sarcomeric thin filaments as assessed by α-sarcomeric actin
staining (Supplementary Fig. 8a). In summary, loss of PI3Kα
kinase activity in the heart markedly increased susceptibility to
biomechanical stress leading to the disruption of the intracellular
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actin cytoskeleton and reduced cardiomyocyte contractility,
which could be restored by the addition of PIP3, the lipid
product of PI3Kα.

Loss of PI3Kα leads to cytoskeletal remodeling and HF. We
next examined the HF phenotype in PI3Kα-deficient mice in
response to pressure-overload and further characterized the
involvement of gelsolin and its interaction with p110α function.
Loss of PI3Kα lipid kinase activity in the heart resulted in
increased susceptibility to HF with an accelerated development of
a severe DCM (Fig. 6a–e and Supplementary Data 1). The exa-
cerbated HF phenotype in pressure-overloaded PI3Kα mutant
hearts was characterized by increased fetal gene reprogramming
(Fig. 6f–h and Supplementary Data 1), increased cardiomyocyte

cross-sectional area and ventricular dilation (Fig. 6i–k and Sup-
plementary Data 1) coupled with increased myocardial fibrosis
(Supplementary Fig. 8b–d and Supplementary Data 1). The
intercellular N-cadherin/β-catenin complex9,23,24 and the integ-
rin-based/focal adhesion kinase (FAK) complex are important
mechanosensors25,26. In response to pressure-overload, upregu-
lation of these sensors was enhanced in PI3Kα mutants compared
with WT hearts (Fig. 6l–m, Supplementary Fig. 9 and Supple-
mentary Data 1). At baseline, PI3Kα mutants were not different
in other key mediators of myocardial remodeling such as the
phosphorylation of Akt (T308) and phospholamban (Ser16/
Thr17), the levels of sarco(endo)plasmic reticulum Ca2+-ATPase
(SERCA2a) and calpain, L-type Ca2+ current (ICa,L), and the
degree of apoptosis between WT and PI3Kα mutant hearts
(Supplementary Fig. 10 and Supplementary Data 1). Moreover,
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p110βflx/flx Cre (βCre) and p110βflx/flx mice subjected to pressure-
overload induced biomechanical stress showed similar cardiac
hypertrophy and fetal gene reprogramming as WT hearts (Sup-
plementary Fig. 11 and Supplementary Data 1), with intact F-
actin, F/G-actin ratio and actin-depolymerizing activity (Supple-
mentary Fig. 12 and Supplementary Data 1). These data establish
PI3Kα specificity in the adverse cytoskeletal remodeling in
response to biomechanical stress.

To test the role of gelsolin in mediating heart disease in the
setting of reduced PI3Kα function, we next generated double-
mutant mice by intercrossing the dominant-negative PI3Kα
(PI3KαDN) mice with GSNKO mice, generating PI3Kα
dominant-negative GSNKO double-mutant (PI3KαDN/GSNKO)
mice (Supplementary Fig. 2b). In contrast to PI3KαDN hearts,
PI3KαDN/GSNKO hearts showed preserved F/G-actin ratio and
actin-depolymerizing activity in response to pressure-overload
induced biomechanical stress (Fig. 7a–c, Supplementary Fig. 13a
and Supplementary Data 1). Preservation of the actin

cytoskeleton in PI3KαDN/GSNKO hearts resulted in normal-
ization of protein levels of N-cadherin, β-catenin, and phosphor-
ylation of FAK in response to pressure-overload (Fig. 7d, e,
Supplementary Fig. 14 and Supplementary Data 1). Importantly,
double-mutant hearts showed attenuated pathological cardiac
remodeling with reduced ventricular dilation and myocardial
fibrosis (Fig. 7f, g, Supplementary Fig. 13b, c and Supplementary
Data 1), hypertrophy (Fig. 7h, i and Supplementary Data 1) and
fetal gene reprogramming (Fig. 7j–l and Supplementary Data 1).
Importantly, loss of gelsolin also attenuated cyclic stretch-induced
biomechanical stress-mediated adverse cytoskeletal remodeling in
isolated cardiomyocytes (Fig. 7m–o and Supplementary Data 1)
which is reflected in maintained cardiomyocyte contractility and
relaxation from pressure-overloaded PI3KαDN/GSNKO hearts
(Fig. 7p–s and Supplementary Data 1). Echocardiographic
assessment in response to 2 weeks of pressure-overload revealed
that loss of gelsolin in PI3KαDN/GSNKO hearts prevented
ventricular dilation and preserved cardiac function (Fig. 7t, u,
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Supplementary Figs. 13d, e and 14, and Supplementary Data 1).
These results provide clear genetic evidence that PI3Kα drives
gelsolin-mediated adverse cytoskeletal remodeling in response to
biomechanical stress.

Discussion
Mechanotransduction, the conversion of biomechanical stimuli
into signal transduction, is mediated by interactions between
the intracellular cytoskeletal network with intercellular
(cell–cell) and extracellular (cell–extracellular matrix) complexes
(Fig. 8)6,9. In the heart, these complexes include the N-cadherin

and β-catenin complexes in intercalated discs4,24,27 and
integrin-mediated recruitment and auto-phosphorylation of
FAK at the cell–extracellular matrix junctions28. The heart is an
organ with a high requirement for precise mechanotransduction
and remodeling of the actin cytoskeleton, as illustrated by loss-of-
function mutations in cytoskeletal proteins, is associated with
the progression of DCM and HF in humans29–31. In particular,
cardiac mechanotransduction plays a fundamental role in
response to biomechanical stress as observed in patients with
hypertension5,6,9.

The reduced p110α levels in advanced HF and PI3Kα-deficient
animal models (αDN and αCre) lowers PIP3 production in
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response to biomechanical stress. Lack of suppression of gelsolin
activity by PIP3 leads to the excessive breakdown of cytoskeleton
compromising the structural integrity of cardiomyocytes
(Fig. 8b). Disrupted cytoskeleton can also lead to secondary
changes including dysregulation of L-type Ca2+ current32 com-
promising excitation–contraction coupling and contributing to
contractile dysfunction. A murine model with cardiomyocyte-
specific loss of PTEN leads to constitutively high PI3Kα activity,
and PIP3 levels were protected from pressure overload mediated
HF10,18 further confirming an important role of PI3Kα/PIP3 axis
in protecting against biomechanical stress. Besides PI3Kα, closely
related isoform PI3Kβ is also present in the heart11,33, but is
not involved in pressure-overload related remodeling since

there was no difference in response to pressure overload between
hearts with cardiomyocyte-specific deletion of p110β (βCre)
and their littermates with intact p110β. Loss of gelsolin in the
PI3KαDN background largely prevented adverse cytoskeletal
remodeling and HF underlying the importance of the cytoskele-
ton in the progression of pressure-overload induced HF. Gelsolin
is a broadly expressed Ca2+-regulated actin filament severing
and capping protein7,20 known to regulate cell motility34. In the
absence of gelsolin, pressure overload cannot trigger cytoskeleton
breakdown (Fig. 8c) preserving myocytes structural integrity and
contractility (no excitation–contraction coupling disruption
due to cytoskeleton-related disruption of ICa,L). GSNKO mice
exhibited no baseline cardiovascular defects, suggesting that
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Fig. 7 Loss of gelsolin attenuates the biomechanical stress-induced cytoskeletal remodeling and preserves the cardiac function in PI3KαDN mice. a–c
Representative images of F- and G-actin staining (a), F- to G-actin ratio (b), and actin-depolymerizing activity (c) showing pressure overload-induced
dysregulation of actin filaments (reduction of F/G-actin ratio) and increased actin-depolymerizing activity in the PI3KαDN LVs. Loss of gelsolin (in αDN/
GSNKO mice) resulted in reduced actin-depolymerizing activity and preserved actin filament arrangement (preserved F/G-actin ratio) in response to
pressure-overload. d, e Representative IF images (d) and their quantification (e) showing attenuated phosphorylation of FAK in αDN/GSNKO hearts in
response to pressure overload. f–i Masson trichrome (f, g) and WGA staining (h) showing alleviation of ventricular dilation (f), cardiac fibrosis (g), and
myocyte cross-sectional area (h, i) in αDN/GSNKO mice compared with the αDN mice in response to pressure overload. j–l Taqman real-time PCR
analyses showing attenuation of increased mRNA expression of cardiac disease markers including ANF (j), BNP (k), and β-MHC (l) in αDN/GSNKO mice
compared with the αDN mice in response to pressure overload-induced biomechanical stress. m–o Representative images of F- and G-actin staining (m),
F- to G-actin ratio (n), and actin-depolymerizing activity (o) showing the attenuation of increased actin-depolymerizing activity in the cardiomyocytes
isolated from αDN/GSNKO LVs compared with αDN LVs subjected to cyclic stretch for 24 h. p–s Single cardiomyocyte contractility measurements (p)
showing attenuation of decreased myofilament FS (q) and ±dL/dt (r, s) in cardiomyocytes isolated from αDN/GSNKO LVs compared with αDN LVs in
response to pressure overload. t–u Quantitative assessment of M-mode echocardiography of LV showing preserved cardiac function in αDN/GSNKO
hearts in response to pressure overload-induced biomechanical stress. Data represent means ± s.e.m. *P < 0.05 compared to all the groups, #P < 0.05
compared with αDN—2 week TAC group as determined by one-way ANOVA analysis (b, c, e, i–l, n, o, q–u). Biological replicates: n= 4 (a, b, d–i), n= 6
(c, m–s), n= 10 (j–l) and n= 12 (t, u). For in vitro experiments, each biological replicate was mean of four technical replicates (m–o); only biological
replicates are plotted and used for statistics. Scale bars show 25 µm (a, d, g, h, m) and 1 mm (f)
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multiple other actin-severing proteins are likely to compensate for
the basal loss gelsolin35 and indicating that gelsolin is selectively
involved in the progression of pressure-overload mediated HF.
Moreover, in human samples from DCM hearts, gelsolin activity
is correlated with severity of myocardial dysfunction corrobor-
ating an important role gelsolin plays in the progression of DCM;
therefore, pharmacological inhibition of gelsolin is a promising
therapeutic approach to prevent adverse cytoskeletal remodeling
in DCM. Adverse myocardial remodeling is a complex process of
cardiomyocyte hypertrophy, fibrosis, and energetics coupled with
altered signaling27,36,37. Mechanical devices, such as LVAD, result
in immediate pressure and volume unloading of the LV38,39. We
found that failing human hearts with DCM and elevated gelsolin
actin-depolymerizing activity responded to LVAD therapy by a
marked improvement in cytoskeletal integrity possibly due to
reduced Ca2+ influx reducing Ca2+-dependent activation of
gelsolin and its severing activity thus improving cytoskeletal
integrity (Fig. 8d). These results further strengthen the clinical
utility of LVAD therapy and suggest a novel mechanism of action.

Importantly, we established that gelsolin is a major determi-
nant in biomechanical stress-mediated advanced HF evidenced by
improved survival, preserved systolic function, and molecular,
cellular, and histological alterations of pressure-overloaded

gelsolin mutant mice compared to littermate WT controls.
However, since gelsolin knockout was not limited to cardio-
myocytes, other cell types, including cardiac fibroblasts, could
have contributed to the protection from pressure overload. Gel-
solin is also highly abundant in fibroblasts where it is responsible
for the actin filament organization7,40, regulation of α-SMA
expression41 and their transformation into myofibroblasts.
Although our data suggest a key regulation of gelsolin activity by
PI3Kα-generated PIP3 in cardiomyocytes, this phenomenon may
also exist in cardiac fibroblasts and may have contributed to the
reduced myocardial fibrosis seen in the pressure-overloaded
GSNKO mice. While decreased cytoskeletal remodeling in car-
diomyocytes in vivo might have contributed to decreased myo-
cardial fibrosis due to less mechanical stress, the role of gelsolin-
mediated cytoskeletal remodeling in cardiac fibroblast and its
implications in DCM warrant further investigation. Interestingly,
gelsolin is also present in close proximity to sarcomeric actin, in
addition to F-actin in microfilaments. However, thin filaments in
cross-striated myofibrils in skeletal muscles are resistant to the
severing action of gelsolin due to the presence of nebulin42. The
cardiac-specific nebulin isoform, called nebulette, confer gelsolin
resistance to the sarcomeric actin filaments in the heart, and we
did not observe disruptions in α-sarcomeric actin, confirming the
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Fig. 8 Regulation of cytoskeleton density by PI3Kα. a Normal myocyte: active PI3Kα produces a pool of PIP3 that suppresses excessive activation of gelsolin
(GSN) by Ca2+ during Ca2+ cycling leading to moderate gelsolin severing activity, normal cytoskeleton (F-actin) density, and good resilience to
biomechanical stress. b Heart failure (e.g., dilated cardiomyopathy, DCM) or PI3Kα-deficient model under pressure overload: low-levels or absent PI3Kα
activity leads to low levels of PIP3. Lack of PIP3 result in unhindered (high) gelsolin activation during Ca2+ cycling, excessive breakdown of cytoskeleton (F-
actin), low-cytoskeleton density, and poor resistance to biomechanical stress leading to DCM. c Heart failure resilience due to GSN deficiency: in the
absence of gelsolin (GSN) and actin-severing activity associated with it, myocytes are able to maintain a high density of cytoskeleton (F-actin) resulting in
high resilience to biomechanical stress and linked heart failure. d Reverse remodeling (LVAD): in the presence of left-ventricular assist device, heart
contraction and associated Ca2+ release are of much lower magnitude. Low levels of Ca2+ during Ca2+ cycling (release) result in less Ca2+-activation of
gelsolin (inactive gelsolin) moderating gelsolin actin-severing activity that leads to improvement in cytoskeletal (F-actin) density, which in turn may drive
reverse remodeling
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selective role of gelsolin in cytoskeletal microfilaments actin
severing. Furthermore, loss-of-function mutations in nebulette
are associated with DCM linked to the disrupted cytoskeleton in
cardiomyocytes43.

In this study, we identified a critical mechanism by which the
adaptive function of PI3Kα acts through the generation of
PIP3 and suppression of gelsolin activity mitigating adverse
remodeling of the intracellular actin cytoskeleton in cardiomyo-
cytes using explanted human hearts, cardiomyocyte-specific
transgenic mice, and lysate-based actin-depolymerizing activity
assay (Fig. 8). We found identical inhibition of gelsolin activity
by equimolar PIP2 and PIP3 using an in vitro lysate-free assay
as reported previously19,44. In response to biomechanical
stress, PI3Kα (p110α) translocates to the intercalated discs and
plasma membrane, where PI3Kα converts PIP2 to PIP3. This
PIP3 sequesters out gelsolin to the plasma membrane, displaying
a spatial colocalization of p110α and gelsolin and provides a basis
for a localized regulation of gelsolin activity by PI3Kα (but not
PI3Kβ) in both human and murine hearts, where p110α-catalyzed
PIP3 negatively regulates gelsolin activity thereby maintaining
cytoskeletal integrity of cardiomyocytes (Fig. 8a). Additionally,
PIP2 binds with multiple binding partners, including but not
limited to cofilin, vinculin, moesin, spectrin, alpha-actinin, and
various other proteins45–48 and this competitive binding of PIP2
may limit its bioavailability for gelsolin binding in vivo.

The capacity of PI3Kα inhibition to block PIP2-mediated
inhibition of actin-depolymerizing and actin-capping activity in
tissue lysate, suggests that the majority of PIP2 effects on actin-
depolymerizing are mediated by PI3Kα-mediated conversion into
PIP3. Our data demonstrate that PIP3 plays a key role in sup-
pressing gelsolin-mediated actin-depolymerizing as well as cap-
ping of the barbed end of F-actin thereby allowing the elongation
of F-actin. Similarly, our experiments with exogenous PIP3 were
carried out in the presence of PTEN inhibition thereby preventing
the generation of PIP2; these studies recapitulated the observa-
tions made in cardiomyocyte-specific mutant PTEN mice. Loss of
cardiomyocyte PTEN enhances PI3Kα action10,49 thereby pro-
tecting the heart from biomechanical stress18. The other major
PI3K isoform in the heart, PI3Kγ, also plays a key adaptive role in
mechanotransduction. Loss of p110γ function results in elevated
cAMP levels, upregulated matrix metalloproteinases, and degra-
dation of N-cadherin leading to exacerbated pressure-overload
mediated HF4. As such, the PI3K family controls mechan-
otransduction in the heart via distinct modes of regulation:
PI3Kα, which is typically activated by tyrosine-receptor kinase
agonizts, negatively regulates gelsolin activity and protects the
intracellular cytoskeleton while PI3Kγ, which is activated by
G-protein coupled receptors, negatively regulates cAMP and
protects the N-cadherin cell adhesion complexes. Biomechanical
stress at the intercellular junction, sensed by N-cadherin, pro-
motes actin polymerization through regulation of gelsolin and
actin assembly50, suggesting a possible cooperative relationship
between distinct PI3K isoforms in heart disease.

Methods
Experimental animals and protocol. GSNKO mice were used7. PI3KαDN mice
express a catalytically inactive p110α under the cardiac-specific α-MHC promoter51.
These mice were crossed with GSNKO mice to generate PI3KαDN/GSNKO double-
mutant mice. Mice with transgenic Cre recombinase under the control of the
αMHC promoter (Jackson Laboratories, Bar Harbor, ME) were crossed with mice in
which the sequences encoding the key parts of the catalytic kinase domain of p110α
(Pik3ca) or p110β (Pik3cb) genes were flanked by loxP sites52,53. Littermate non-Cre
and WT mice were used as pooled controls (Ctrl). All experiments were performed
in accordance with Institutional guidelines, Canadian Council on Animal Care, and
the Guide for the Care and Use of Laboratory Animals published by the US
National Institutes of Health (revised 2011). All studies were approved by the
Animal Care and Use Committee at the University of Alberta.

Human and canine explanted hearts. Our study was approved by the Ethics
Committee at the University of Alberta, and all patients provided written informed

consents in accordance with the Declaration of Helsinki (2008) of the World
Medical Association. LV tissues were harvested from explanted human failing
hearts and donor nonfailing control (NFC) human hearts which were preserved
in cold cardioplegia solution via Human Explanted Heart Program at the
Mazankowski Alberta Heart Institute and the Human Organ Procurement and
Exchange program at the University of Alberta Hospital, respectively, and rapidly
snap-frozen in liquid nitrogen within 15 min of explantation. Canine myocardial
samples were obtained from the LV free wall of dogs with advanced DCM resulting
in HF whose owners elected humane death or dogs with no previous history of
cardiovascular disease (NFCs)54. Samples were rapidly frozen in liquid nitrogen
and stored at −80 °C. Written consent was obtained from all patients and clients.

Transverse aortic constriction. Young (8–8½-week old) GSNKO, WT littermate
controls, PI3KαDN (αDN), PI3Kαflx/flx Cre (αCre), PI3Kβflx/flx Cre (βCre), and
PI3KαDN/GSNKO (αDN/GSNKO) male mice were subjected to transverse aortic
constriction (TAC)-induced pressure overload4,5,18,55,56. Sham-treated animals
underwent the same procedure without the aortic constriction.

Echocardiography and pressure–volume loop analyses. Transthoracic
echocardiography and tissue Doppler imaging was performed noninvasively
and analyzed in a blinded manner using a Vevo 3100 high-resolution imaging
system equipped with a 30-MHz transducer (RMV-707B; VisualSonics, Toronto,
Canada)56,57. LV pressure–volume analysis was performed using a 1.2F PV
catheter (Scisense, Canada)58,59.

Isolated cardiomyocyte contractility. Measurement of isolated cardiomyocyte
contractility was performed as described4. Briefly, cardiomyocytes were perfused
with modified Tyrode’s solution containing 1.2 mM Ca2+ at 35–36 °C and paced
with field stimulation at 1 Hz. Sarcomere length was estimated in real time by
software from images captured by the high-speed camera at a rate 200frames−1.
Measurements of fractional shortening, and ±dL/dt were done at steady state
(past 2 min of continuous stimulation). Only cardiomyocytes producing contrac-
tion of stable amplitude and kinetics at steady state were selected for analysis.

Histology, wheat-germ and F-/G-actin staining, and IF. Hearts were arrested in
diastole with 1M KCl, fixed in 10% buffered formalin, and embedded in paraffin.
Ten-micrometer-thick sections were stained with picrosirius red or Masson tri-
chrome to assess myocardial fibrosis and were visualized using fluorescence
microscopy (Olympus IX81) and light microscopy (DM4000 B, Leica), respectively,
as described56,57. Five-micrometer-thick OCT-embedded cryosections were stained
with Oregon Green 488-conjugated wheat-germ agglutinin (WGA; #W6748,
ThermoFisher) and DAPI (#D3571, ThermoFisher) and visualized under a fluor-
escence microscope (Olympus IX81) to assess cardiomyocyte cross-sectional
area56. For the α-sarcomeric actin staining, OCT-embedded heart cryosections
were fixed in 4% paraformaldehyde and permeabilized in 100% methanol. After
blocking, the sections were incubated with the α-sarcomeric actin antibody
(#M0874, Dako; 1:50) followed by secondary antibody incubation, co-staining with
Texas Red-X conjugated WGA (#W21405, ThermoFisher) and visualized using
fluorescence microscopy (Olympus IX81).

Five-micrometers thick OCT-embedded cryosections and isolated
cardiomyocytes were stained with Alexa Fluor 488-conjugated phalloidin
(#A12379, ThermoFisher), Alexa Fluor 594-conjugated DNase I (#D12372,
ThermoFisher), tetramethylrhodamine-WGA (#W849, ThermoFisher) and DAPI
to visualize F-actin, G-actin, cell membranes, and nuclei, respectively. F-actin and
G-actin staining intensities were quantified using Fiji ImageJ (NIH) from these
images, and the F-actin to G-actin ratio was utilized as an index for actin
polymerization. Tissue sections and isolated cells were visualized using confocal
microscopy (Leica SP5, Leica Microsystems).

Actin depolymerization and capping assays. A commercially available kit (Actin
polymerization kit #BK003, Cytoskeleton Inc.) was used to assess actin-
depolymerizing activity19. Briefly, “buffer A” was prepared by mixing general actin
buffer (5 mM Tris-HCl pH 8.0 and 0.2 mM CaCl2; #BSA01-010, Cytoskeleton, Inc.)
with ATP stock (100 mM; #BSA04-001, Cytoskeleton, Inc.) and actin poly-
merization buffer (500 mM KCl, 20 mM MgCl2, 0.05M guanidine carbonate, and
10 mM ATP; #BSA02-001, Cytoskeleton, Inc.). The final composition of “buffer A”
is 5 mM Tris-HCl pH 8.0, 0.2 mM CaCl2, 0.45 mM ATP, 12.5 mM KCl, 0.5 mM
MgCl2, and 1.25 µM guanidine carbonate. The pyrene-labeled F-actin was prepared
by incubating 0.4 mgml−1 pyrene-labeled muscle actin (#AP05, Cytoskeleton, Inc.)
with “buffer A” for 1 h at room temperature. Tissue and cellular proteins were
prepared in phosphate buffered saline (137 mM NaCl, 2.7 mM KCl, 10 mM
Na2HPO4 and 1.8 mM KH2PO4) pH 7.4 with 1× cOmplete Protease
(#11697498001, Millipore Sigma) and PhosSTOP Phosphatase (#4906845001,
Millipore Sigma) inhibitor cocktails.

To perform the actin-depolymerization assay, pyrene-labeled F-actin (substrate)
was incubated with total proteins isolated from various tissues and cells (as
described above), recombinant porcine cytosolic (#8304-1, Hypermol, UK) or
recombinant human plasma gelsolin which was synthesized using the Escherichia
coli expression system, purified and characterized60,61. The recombinant gelsolin
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was pre-incubated (20 min at room temperature) with PIP2 (#P-4508, Echelon
Biosciences) or PIP3 (#P-3908, Echelon Biosciences) to assess their effects on actin
depolymerization. The final composition in each assay well was 0.2 mgml−1

pyrene-labeled F-actin, 100 µg of protein (isolated from tissues or cells), 2.5 mM
Tris-HCl pH 8.0, 0.1 mM CaCl2, 0.225 mM ATP, 6.25 mM KCl, 0.25 mM MgCl2,
and 0.625 µM guanidine carbonate with or without 20 µM PIP2 or PIP3.

In a lysate-free assay, 20 µM of PIP2 or PIP3 were pre-incubated (20 min) with
rpGSN (600 nM), and their effect on the inhibition of gelsolin actin-
depolymerization activity was assessed. The final composition in each assay well
was 0.2 mg ml−1 pyrene-labeled F-actin, 2.5 mM Tris-HCl pH 8.0, 0.1 mM CaCl2,
0.225 mM ATP, 6.25 mM KCl, 0.25 mMMgCl2, and 0.625 µM guanidine carbonate
with or without 20 µM PIP2 or PIP3. The actin-depolymerization assay was
carried out as described above. Decay in the fluorescence was recorded using a
microplate reader (Spectramax M5, Molecular Devices) and presented as actin-
depolymerizing activity.

In a lysate-based assay gelsolin (600 nM of rpGSN and 60 nM of rhGSN) was
spiked to the GSNKO cardiac whole cell lysate proteins (extracted from heart
tissues as described above). Effects of equimolar (20 µM) PIP2 (#P-4508, Echelon
Biosciences) and PIP3 (#P-3908, Echelon Biosciences) were evaluated on the
gelsolin actin-depolymerization activity using the biochemical kit after 20 minutes
pre-incubation of gelsolin with PIP2/PIP3. The actin-depolymerization assay was
carried out as described above. Decay in the fluorescence was recorded using a
microplate reader (Spectramax M5, Molecular Devices) and presented as actin-
depolymerizing activity. In human DCM samples, the actin-depolymerizing assay
was performed following immunoprecipitation of gelsolin.

Actin polymerization assays were conducted to assess the effect of PIP2 and
PIP3 on actin-capping activity of recombinant porcine cytosolic and human
plasma gelsolin. Briefly, G-actin (substrate) was prepared by reconstitution of 2 μM
pyrene-labeled muscle (0.1 mg ml−1) actin in the “buffer A” as described above. To
initiate actin-capping, we treated G-actin (2 μM) with “buffer A” (5 mM Tris-HCl
pH 8.0, 0.2 mM CaCl2, 0.45 mM ATP, 12.5 mM KCl, 0.5 mM MgCl2, and 1.25 µM
guanidine carbonate) and 100 µg total protein extracted from the GSNKO hearts
(as described above). The increase in fluorescence was recorded overnight using
the microplate reader (Spectramax M5) and was expressed as actin-polymerizing
activity. Effects of recombinant porcine/human gelsolin and PIP2 or PIP3 (20 µM;
Echelon Biosciences) were also recorded.

TaqMan real-time PCR and Western blot analyses. Messenger RNA levels were
quantified with TaqMan Real-Time PCR using ABI Prism 7700 sequence detection
system as described previously4,56. A list of primers and probes along with their
sequences are presented in Supplementary Table 4. Co-immunoprecipitation and
Western blot analyses were performed as described4,57. Uncropped western blot
images of data shown in Figs. 2 and 5 and Supplementary Figs. 1 and 10 can be
found in Supplementary Fig. 15.

Computer modeling and molecular dynamic simulation. Using the X-ray
structure of human gelsolin8, comparative homology modeling was used to model
the full-length structure of human gelsolin (782 amino acids) using this crystal
structure (PDB ID: 3FFN) as a template (Modeller 9.14; http://salilab.org/modeller/
)62,63. We studied comparative binding and molecular interactions between the
N- and C-terminus domains of human gelsolin with PIP2 and PIP364,65. Molecular
dynamic simulations of the PIP2- and PIP3-bound gelsolin complexes were
performed using GROMACS 5.1.2 software package66. Normal mode analysis67,68

and principal component analysis69–71 were used to model the dynamic changes in
gelsolin structure in response to PIP2 and PIP3 binding.

Isolation, culture, and stretching of adult cardiomyocytes. Adult murine LV
cardiomyocytes were isolated from WT, GSNKO, αDN, αCre, and αDN/GSNKO
mice, and cultured5,57,72. Cardiomyocytes were cyclically stretched at 1 Hz with a
maximal elongation of 10% for 6 or 24 h by Flexcell FX-5000 Tension System
(Flexcell Int. Corp.). Cardiomyocytes were divided into two groups to receive
placebo or PIP3 micelles together with 500 nM VO-OHpic (PTEN inhibitor;
#V8639, Millipore Sigma) and 30 μM PBP-10 (PIP2-binding peptide; #4611, Tocris
Bioscience). After completion of the stretching protocol, cells were either frozen for
protein isolation or fixed with paraformaldehyde, and later used to perform F-actin
and G-actin double staining. The ratio between F-actin and G-actin staining
intensities was represented as an index of actin polymerization. Protein isolated
from frozen cells was utilized to assess the actin-depolymerizing activity.

Statistical analysis. Sample sizes were calculated to be able to detect a moderate
effect size (Cohen’s moderate; α= 5%, β= 10%, 90% power of the study)
accounting for the expected death of animals (in survival surgeries). All data are
shown as mean ± SEM. All statistical analyses were performed using SPSS software
(Chicago, Illinois; Version 23). The effects of genotype and TAC were evaluated
using one-way ANOVA followed by the Tukey’s post hoc test for multiple com-
parison testing. Unpaired Student’s t test (two-tailed) was used to compare two
groups. Kaplan–Meier survival curves were analyzed using the log-rank (Mantel-
Cox) test. Statistical significance is recognized at p < 0.05.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corre-
sponding author upon reasonable request.
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