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Background-—Cancer therapies inhibiting PI3Ka (phosphoinositide 3-kinase-a)–dependent growth factor signaling, including
trastuzumab inhibition of HER2 (Human Epidermal Growth Factor Receptor 2), can cause adverse effects on the heart. Direct
inhibition of PI3Ka is now in clinical trials, but the effects of PI3Ka pathway inhibition on heart atrophy, remodeling, and function in
the context of cancer therapy are not well understood.

Method and Results-—Pharmacological PI3Ka inhibition and heart-specific genetic deletion of p110a, the catalytic subunit of
PI3Ka, was characterized in conjunction with anthracycline (doxorubicin) treatment in female murine models. Biventricular changes
in heart morphological characteristics and function were analyzed, with molecular characterization of signaling pathways. Both
PI3Ka inhibition and anthracycline therapy promoted heart atrophy and a combined effect of distinct right ventricular dilation,
dysfunction, and cardiomyocyte remodeling in the absence of pulmonary arterial hypertension. Congruent findings of right
ventricular dilation and dysfunction were seen with pharmacological and genetic suppression of PI3Ka signaling when combined
with doxorubicin treatment. Increased p38 mitogen-activated protein kinase activation was mechanistically linked to heart atrophy
and correlated with right ventricular dysfunction in explanted failing human hearts.

Conclusions-—PI3Ka pathway inhibition promotes heart atrophy in mice. The right ventricle is specifically at risk for dilation and
dysfunction in the setting of PI3K inhibition in conjunction with chemotherapy. Inhibition of p38 mitogen-activated protein kinase is
a proposed therapeutic target to minimize this mode of cardiotoxicity. ( J Am Heart Assoc. 2019;8:e010961. DOI: 10.1161/
JAHA.118.010961.)
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T he PI3K (phosphoinositide 3-kinase) family of lipid
kinases is a central transducer of receptor tyrosine

kinase signaling and mutations causing unregulated pathway
activation among receptor tyrosine kinases; PI3Ks and

inhibitory phosphatases, including PTEN (Phosphatase and
Tensin Homologue), are among the most commonly occur-
ring sites of mutations in patients with cancer, including
gain-of-function mutations in the p110a class 1A catalytic
subunit (gene name: PIK3CA) in women with breast
cancer.1–3 Cancer therapies can increase the risk of heart
disease; anthracycline chemotherapy as well as antibody
therapy against HER2 (trastuzumab) and vascular endothelial
growth factor pathway inhibitors,4–11 which may exacerbate
traditional cardiovascular risk factors, are often highly
represented in patients with cancer. Activation of the PI3Ka
pathway, downstream of HER2, is specifically implicated in
causing resistance to trastuzumab.12 PI3K inhibitors may be
most effective in cancer therapy in combination with other
receptor tyrosine kinase and oncogenic signaling pathway
inhibition, as well as cytotoxic chemotherapy agents,13

inadvertently increasing the chance of adverse, multiple-hit
effects on the heart.14

Assessment of cardiotoxic cancer therapies in clinical
use has focused on left ventricular (LV) remodeling using
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ejection fraction (EF) as an indicator of reduced heart
function. However, EF may not capture important remod-
eling if cancer therapy–related effects do not follow
common heart failure pathophysiological characteristics of
increased end diastolic volumes, leading to reduced EF.
Heart atrophy is common in patients with cancer on the
basis of postmortem measurements,15 and more specifically
in cancer cachexia,16 but the relevance of heart atrophy for
heart function has received little attention, as conventional
heart failure is commonly characterized by a larger heart
mass. However, PI3K signaling is a key mediator of growth
factor signaling and regulation of heart mass,17 which is
notable considering the existing propensity for reduced
heart mass from cancer.15 Cancer cachexia is a syndrome
of severe loss of body mass, often involving both lean and
fat loss, which is a common complication of advanced
cancer and cancer therapies, with potential effects on heart
mass and function.18 We recently reported that patients
with breast cancer who have received anthracycline and
trastuzumab therapy have reduced heart mass as well as
biventricular reduction in function compared with healthy
controls,19 consistent with 2 other concurrent reports of
reduced heart mass in patients with cancer receiving
anthracycline therapy.20,21 The aim of this study was to
determine the effect of PI3Ka inhibition on the cardiac
structure and function in female murine models receiving
cytotoxic anthracycline (doxorubicin) treatment.

Methods
The corresponding author will make the data supporting the
findings in this study available if a reasonable request is
made.

Animal Use and Drug Treatment Protocols
All animals used were female mice in a C57BL/6 background.
Female wild-type mice were treated daily in 5-day cycles with
BYL719 (trade name Alpelisib) suspended in corn oil
(3.75 mg/mL), or equal volume vehicle, by oral gavage
(30 mg BYL719/kg per day), based on dosing previously
shown to cause tumor regression by BYL719 in murine
models.22–24 Mice were treated once weekly with doxorubicin
dissolved in dimethyl sulfoxide (5% final) and diluted in saline
(1.25 mg/mL), or equal volume vehicle, by IP injection
(10 mg doxorubicin/kg per week). For MAPK (p38 mitogen-
activated protein kinase) inhibition, mice were treated daily in
5-day cycles with SB202190 dissolved in dimethyl sulfoxide
(5% final) and diluted in saline (1.25 mg/mL) given by IP
injection (5 mg/kg), a dose previously used to limit weight
loss in tumor-bearing mice.25

Heart-specific genetic deletion of p110a was achieved by
breeding mice homozygous for loxP sites (flanked by LoxP; flx)
at the p110a gene (PIK3CA), as previously described,26 with
Cre recombinase under the control of the aMHC (aMyosin
Heavy Chain) promoter (The Jackson Laboratory; Tg[Myh6-cre]
1Jmk/J; No. 009074) back crossed 10 generations. These
mice were previously shown to have reduced p110a protein in
heart tissue.27 All experiments were performed in accordance
with institutional guidelines, the Canadian Council on Animal
Care, and the Guide for the Care and Use of Laboratory
Animals, published by the US National Institutes of Health
(revised 2011). The details on physiological phenotyping,
histological and molecular characterization, and statistical
analysis used in this study can be found in Data S1.

Results

Cotreatment With PI3Ka Inhibitor and
Doxorubicin Results in Heart Atrophy and
Increased Mortality
To simulate the potential clinical application of cycles of
anthracycline with PI3Ka inhibition, wild-type female mice
were treated 4 weeks with weekly doses of doxorubicin and
5/week daily doses of the PI3Ka-specific inhibitor, BYL719
(Figure 1A).27 Phenotyping was performed after 1 to 2 weeks
of follow-up to assess persisting effects. Unexpected mortal-
ity was observed in the doxorubicin+BYL719 group beginning
near the end of the fourth week of treatment and continued

Clinical Perspective

What Is New?

• Inhibition of PI3Ka (phosphoinositide 3-kinase-a) in female
mice causes heart atrophy, and when combined with
doxorubicin treatment, it caused right ventricular dilation
and dysfunction.

• Combination PI3Ka inhibition and doxorubicin treatment
caused activation of p38 mitogen-activated protein kinase,
which was implicated in adverse remodeling of the heart.

What Are the Clinical Implications?

• Use of PI3Ka inhibitors as cancer therapies has the
potential to promote heart atrophy, and the right ventricle
may be more susceptible to dysfunction and dilation in this
setting.

• Assessment of heart morphological characteristics and
function in patients receiving PI3Ka inhibitors should
capture heart mass as well as biventricular assessment of
morphological characteristics and function.

• Inhibition of p38 mitogen-activated protein kinase is a
potential target to mitigate heart atrophy and adverse
remodeling.
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Figure 1. Treatment with BYL719 and doxorubicin causes mortality, weight loss, and heart atrophy. A,
Mice were treated 5 d/wk with daily BYL719 (30 mg/kg) and 1 d/wk with doxorubicin (10 mg/kg), along
with single-drug+vehicle groups and a double-vehicle group (Veh), for 4 weeks with a 2-week follow-up
period (n=8–17). B, Mice treated with doxorubicin+BYL719 had mortality that continued after treatment
was stopped. C, Doxorubicin and BYL719 caused body weight loss. D, Whole body lean mass was reduced
by doxorubicin+BYL719, and percentage body fat was reduced by doxorubicin (body composition measured
at end of treatment; n=7–12). E, Heart weight (HW), normalized to tibial length (TL), was reduced by
doxorubicin and BYL719. F, Cardiomyocyte cross-sectional area outlined by wheat germ agglutinin staining,
measured in both the left ventricle (LV) and right ventricle (RV), was reduced by BYL719 in the RV (n=4). G,
A 3.5-week treatment protocol caused (H) reduced body weight with doxorubicin+BYL719, but (I) there was
no change in average 24-hour food consumption normalized to body weight. J, Doxorubicin+BYL719
treatment caused increased ratio of cardiomyocyte length/width and reduced cardiomyocyte area in the LV
and RV (45–82 cells/ventricle from 3 hearts/group). †Doxorubicin effect, ‡BYL719 effect, or ◊doxoru-
bicin+BYL interaction indicates P≤0.05 in 2-way ANOVA. *P ≤ 0.05 in unpaired t-test.
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over the 2-week follow-up period (Figure 1B). Doxorubicin and
BYL719 treatment caused gradual weight loss, which was
exacerbated in the doxorubicin+BYL719 group (Figure 1C),
whereas body composition analysis showed that doxorubicin
caused loss of fat mass and doxorubicin+BYL719 had a
combined negative effect on lean mass (Figure 1D). Both
doxorubicin and BYL719 caused heart atrophy (Figure 1E),
which was consistent with reduction in myocyte cross-
sectional area (Figure 1F). These effects occurred in the
absence of significant hyperglycemia (Figure S1A), a potential
metabolic adverse effect of PI3Ka inhibition.

We next treated an additional cohort for only 3.5 weeks
(Figure 1G) for the following reasons: (1) to avoid survival bias
in the doxorubicin+BYL719 group, (2) to measure food
consumption as a possible confounding cause of weight loss,
(3) to collect tissues for molecular investigation under
conditions in which direct effects of BYL719 are still present,
and (4) to expand our investigation of heart parameters.
Although both doxorubicin and BYL719 caused weight loss
(Figure 1H), daily measurement of food consumption during
the third week of treatment showed stable food consumption
normalized to body mass (Figure 1I). Isolation and character-
ization of right ventricular (RV) and LV cardiomyocytes in a
cohort of vehicle- and doxorubicin+BYL719-treated mice
confirmed cellular atrophy (reduced area) and eccentric
remodeling (increased length/width) with doxorubicin+BYL719,
which was more pronounced in the RV (Figure 1J). These
results demonstrated a striking increase in mortality and heart
atrophy with biventricular cellular remodeling in response to
combination doxorubicin+BYL719 therapy.

Biventricular Remodeling Is Characterized by
Reduced Stroke Volume and RV Dilation
We then performed functional cardiac characterization using
echocardiography and invasive pressure-volume measure-
ments. Echocardiography showed that doxorubicin treatment
caused reduced LV chamber diastolic and systolic dimen-
sions, resulting in decreased LV stroke volume, with a further
reduction in response to combination therapy with BYL719
coupled with diastolic dysfunction (Figure 2A and 2B; Table 1)
in the absence of pulmonary congestion (Figure S1B). We
performed invasive LV pressure-volume analysis to perform
load-independent assessment of myocardial contractility,
revealing reduced negative maximal rate of contraction and
relaxation with doxorubicin treatment (Figure 2C and
Table 1). In the 3.5-week treated cohort, distinct LV remod-
eling was pronounced and characterized by reductions in LV
chamber dimensions and stroke volume by BYL719 at this
time point (Figure 2D and 2E), suggesting that the effects of
BYL719 on LV chamber dimensions may have been partially
masked by survival bias, doxorubicin effects, and transience

of BYL719 effects in the previous cohort that underwent
4+2 weeks of treatment.

In contrast to reduced volumes seen in the LV, the RVs of
doxorubicin+BYL719-treated mice (4+2-week protocol) were
dilated, had reduced fractional shortening, and had some
irregular septal motion; liver weights were reduced with both
treatments, not indicating any hepatic edema (Figure 3A and
3B; Video S1). Pulmonary artery acceleration time (Figure S1B)
and the ratio between LV and RV myocyte cross-sectional area
(Figure S1C), indicators of pulmonary arterial hypertension,
were not significantly altered between experimental groups.
Catheterization of the RV was performed 4 to 6 days after the
final dose of doxorubicin and 1 to 2 hours after the final dose of
BYL719 in 3.5-week treated mice. Relative RV EF was reduced
in doxorubicin-treated hearts, with some doxorubicin+BYL719
hearts declining further in relative EF and stroke volume at this
early time point. However, there was no alteration in RV filling
and peak systolic pressures (Figure 3C and 3D), consistentwith
the absence of pulmonary arterial hypertension or overt RV
failure. Hearts did not show increased apoptosis (terminal
deoxynucleotidyl transferase-mediated dUTP nick-end labeling
staining) or myocardial fibrosis based on Masson’s trichrome
and picrosirius red staining in response to doxorubicin+BYL719
(Figure S1F and S1G). Electrocardiographic analysis confirmed
intact heart rate, PR interval, and QRS duration, with significant
prolongation of the Bazett’s correction QT interval, confirming
the presence of cardiomyopathy in the absence of conduction
disease in the combination treated mice (Figure S2). Specifi-
cally, the normal QRS duration and morphological character-
istics rule out the presence of bundle branch block. We have
performed an in-depth analysis of the electrophysiological
effects of PI3Ka inhibition, which demonstrated that the
prolonged corrected QT interval is linked to increased late
sodium current.28 We did not observe evidence of overt RV
failure in ourmodel, such as elevated RVEDP (right ventricle end
diastolic pressure) (Figure 3D), livers were visually normal with
reduced weights in treated groups (Figure 3B), and there was
no evidence of ascites or hepatic edema. We can only speculate
that the RV remodeling and dysfunction we observed could
progress to overt RV failure. Our results illustrate a unique
cardiotoxicity in doxorubicin+BYL719-treated mice, character-
ized by RV dilation, decreased LV cardiac output, and myocar-
dial contractility in the absence of pulmonary arterial
hypertension or significant cellular death.

Cardiomyocyte-Specific Loss of PI3Ka
Potentiates the Susceptibility to Doxorubicin
Toxicity
We next used a female, cardiomyocyte-specific p110a deletion
mouse strain (aMHC-Cre) to investigate the direct contribution
of the loss of cardiomyocyte p110a function to biventricular
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remodeling in response to doxorubicin. The aMHC-Cre/p110a
cohort of doxorubicin-treated mice did not sustain the high
mortality rates seen in the doxorubicin+BYL719 group (4+2-
week protocol), so a total of 5 weeks of treatment were
completed with 2 weeks of follow-up after the last treatment
(5+2-week protocol) (Figure 4A). Doxorubicin treatment
caused body weight loss and cardiac atrophy in the aMHC-
Cre/p110a mice (Figure 4B). Transthoracic echocardiography
showed a dilated RV, reduced fractional shorteningwith striking
interventricular dependence, and a D-shaped septum in the
doxorubicin+aMHC-Cre/p110a group (Figure 4C; Table 2;
Video S2).

A second cohort was treated for 4 weeks, and invasive RV
catheterization was performed, which confirmed RV dilation
and reduced relative cardiac output and EF in the aMHC-Cre/
p110a+doxorubicin group (Figure 4D and 4E; Table 2). Histo-
logical analysis of the lungs demonstrated no overt changes in
the pulmonary vasculature or pulmonary fibrosis in doxoru-
bicin+Cre mice and doxorubicin+BYL719 mice (Figure S3).
Doxorubicin treatment reduced LV volume and cardiac output
coupled with reduced myocardial contractility, as illustrated by
the decrease in end-systolic pressure-volume relationship as
well as impaired maximal rate of contraction and relaxation

(Figure 4F and 4G; Table 2). There was also evidence of
diastolic dysfunction in tissue Doppler and isovolumic relax-
ation time, but not pulsewaveDoppler early filling/atrial systole
ratio, possibly indicating that load-dependent effects might
mask diastolic dysfunction in the pulse wave Doppler early
filling/atrial systole ratio parameter.29

Molecular Basis for the Biventricular
Cardiomyopathy
We next investigated the molecular pathogenesis of the
biventricular myocardial remodeling observed in doxoru-
bicin+Cre/BYL719-treated mice. Consistent with adverse
remodeling, expression of heart disease markers showed
that doxorubicin increased expression of the b-myosin heavy
chain isoform with a trend to increase atrial natriuretic factor
in doxorubicin+BYL719-treated hearts (Figure S4A). Phospho-
rylation and activation of p38 MAPK, which is suppressed by
the PI3K/protein kinase B pathway,30 are linked to the
promotion of atrophy and contractile dysfunction.31 Activation
of p38 MAPK was increased by both doxorubicin and BYL719
treatment, resulting in even higher activation by additive
effects in doxorubicin+BYL719-treated hearts (Figure 5A). In
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mode images from double treated vehicle- and doxorubicin+BYL719-treated hearts. B, LV chamber
dimensions (LV internal diameter end diastole [LVIDd] and LV internal diameter end systole [LVIDs]) and LV
stroke volume (SV) were reduced by doxorubicin. C, LV-positive and LV-negative maximum rates of pressure
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treated vehicle and double-treated doxorubicin+BYL719 hearts at 3.5 weeks of treatment. E, Mice treated
for 3.5 weeks (n=7–8) have LV chamber dimensions and SV decreased by a BYL719 effect. †Doxorubicin
effect, ‡BYL719 effect, or ◊doxorubicin+BYL719 interaction indicates P≤0.05 in 2-way ANOVA.

DOI: 10.1161/JAHA.118.010961 Journal of the American Heart Association 5

PI3Ka Inhibition, Heart Atrophy, and RV Dysfunction McLean et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H

D
ow

nloaded from
 http://ahajournals.org by on M

ay 16, 2019



the aMHC-Cre/p110a mice, doxorubicin treatment also
resulted in a similar pattern of increased p38 activation in
the heart (Figure 5B). BYL719, on its own, increased p38
phosphorylation, whereas cardiomyocyte deletion of p110a
(Cre) did not, indicating a difference between genetic and
pharmacological approaches, possibly because of noncar-
diomyocyte cells also being affected in the pharmacological
model. Activation of p38 is associated with increased
oxidation-reduction stress and inflammation31; in heart tissue,

expression of proinflammatory cytokines (tumor necrosis
factor-a and interleukins 6 and 1b) was not upregulated in
either the LV or RV with doxorubicin and BYL719 treatment
(Figure S1E). However, dihydroethidium fluorescence indi-
cated increased reactive oxygen species production driven by
doxorubicin treatment (Figure 5C). To understand the trans-
lational aspect of these findings, we next investigated p38
MAPK activation and oxidation-reduction stress in female
explanted human hearts with dilated cardiomyopathy, a

Table 1. LV Heart Function in Doxorubicin- and BYL719-Treated Mice

Variable Vehicle Doxorubicin BYL719 Doxorubicin+BYL719 P Value

LV echocardiography, n 8 8 8 12 . . .

LVIDd, mm 3.9�0.04 3.5�0.08 3.7�0.06 3.5�0.11* †

LVIDs, mm 2.8�0.05 2.3�0.12 2.5�0.04 2.4�0.11* †

LVFS, % 30.2�0.6 33.7�2.2 32.2�0.9 30.5�1.6* NS; P=0.085‡

LVEF, % 58.1�0.9 63.1�2.9 61.1�1.2 58.7�2.3* NS; P=0.098‡

IVRT, ms 15.4�0.7 17.0�0.8 15.0�0.3 18.2�0.8* †

IVCT, ms 10.8�0.9 12.0�1.0 13.8�0.7 12.6�1.0* NS; P=0.074§

E/A 1.7�0.1 1.6�0.1 1.6�0.1 1.7�0.1* NS

E0/A0 1.15�0.02 1.15�0.06 1.11�0.06 0.90�0.04* ‡

LV PV loops, n 8 8 8 5 . . .

HR, bpm 439�17 407�13 430�13 400�12* †

ESP, mm Hg 92.2�1.7 90.4�2.8 93.1�1.4 86.1�1.1* †

EDP, mm Hg 10.3�1.4 5.9�0.9 7.4�1.0 8.7�0.9* ‡

dP/dtmax, mm Hg/s 7997�348 7390�459 7979�461 6947�298* NS; P=0.079†

�dP/dtmax, mm Hg/s �5955�333 �5682�418 �6134�218 �4643�416* †

ESV, lL 9.7�1.6 5.5�1.5 6.8�0.7 5.9�1.2* NS; P=0.079†

EDV, lL 25.4�2.0 19.2�1.5 25.9�2.5 19.6�2.1* †

SV, lL 18.1�0.7 13.7�0.8 19.5�2.2 13.7�1.6* †

CO, mL/min 7.7�0.4 5.7�0.5 8.3�1.0 5.4�0.6* †

LVEF, % 72.4�5.2 73.5�5.6 74.1�2.7 70.2�4.6* NS

ESPVR 6.5�0.7 5.6�0.7 7.1�0.7 4.2�0.5* †

EDPVR 0.10�0.02 0.16�0.03 0.08�0.01 0.21�0.05* †

RV PV loops, n 9 7 8 7 . . .

HR, bpm 449�26 452�35 480�18 436�25 NS

ESP, mm Hg 24.9�1.8 20.0�1.3 19.6�1.6 21.7�1.8 NS

EDP, mm Hg 0.7�0.8 �0.1�0.9 0.1�0.4 �1.2�1.5 NS

Pmax, mm Hg 27.0�1.4 24.6�0.9 23.8�1.9 25.9�1.8 NS

Values are mean�SEM. A 2-way ANOVA was performed. LV echocardiography was performed on mice treated with doxorubicin and/or BYL719 for 4+1 to 2 weeks of follow-up; LV PV loops
were performed at 4+2 weeks of follow-up; RV PV loops were performed at 3.5 weeks of treatment. Bpm indicates beats per minute; CO, cardiac output; dP/dtmax, maximum rate of positive
pressure change;�dP/dtmax,maximum rate of negative pressure change; E/A, pulse-waveDoppler early filling/atrial systole; E0/A0 , tissueDoppler frommitral valvemovement from early filling
and atrial systole; EDP, end-diastolic pressure; EDPVR, end-diastolic PV relationship; EDV, end-diastolic volume; ESP, end-systolic pressure; ESPVR, end-systolic PV relationship; ESV, end-
systolic volume; HR, heart rate; IVCT, isovolumic contraction time; IVRT, isovolumic relaxation time; LV, left ventricular; LVEF, LV ejection fraction; LVFS, LV fractional shortening; LVIDd, LV
internal dimension diastolic; LVIDs, LV internal dimension systolic; NS, not significant; Pmax, maximum pressure; PV, pressure-volume; RV, right ventricular; SV, stroke volume.
*Possible survival bias.
†P≤0.05 for doxorubicin effect.
‡P≤0.05 for doxorubicin+BYL719.
§P≤0.05 for BYL719 effect.
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disease that involves both ventricles. Interestingly, both p38
activation (Figure 5D) and dihydroethidium fluorescence (Fig-
ure 5E) were increased in both ventricles compared with age-
and sex-matched controls with a greater mean p38 level
in the RV compared with the LV in hearts with dilated
cardiomyopathy.

We analyzed FOXO1 (Forkhead Box 01), and SMAD
(Mothers Against Decapentaplegic Homolog) 2/3, and atrogin
because of their association with muscle atrophy32; however,
these pathways did not change in a way that would explain
our phenotypic observations with doxorubicin+BYL719 treat-
ment. Nuclear localization of FOXO1 was decreased by
doxorubicin in the RV, and Smad2/3 was detected only in
nonnuclear fractions (Figure S4B). Furthermore, expression of
atrogin-1, a regulatory target of FOXO1, was not changed
(Figure S4C). We next investigated other potential molecular
mechanisms of RV dysfunction. Phosphodiesterase 5 was
reported to be increased in the RV in the setting of pulmonary
arterial hypertension, and phosphodiesterase 5 inhibition
improved RV function.33 In the present study, phosphodi-
esterase 5 was increased in doxorubicin-treated LV, with a

similar trend in the RV (Figure S4D). We did not proceed to
testing the effects of phosphodiesterase 5 inhibition because
phosphodiesterase 5 was not particularly elevated in the
doxorubicin/BYL719 group, but others have reported heart
protection of phosphodiesterase 5 inhibition in doxorubicin-
treated mice.34 Pyruvate dehydrogenase is a metabolic
regulator that has also been specifically connected to RV
disease.35 Phosphorylation (inhibitory) was increased in the
LV and RV on BYL719 treatment, with no effect of doxorubicin
on the LV; but, in the RV, doxorubicin suppressed pyruvate
dehydrogenase phosphorylation (Figure S4E). Neither phos-
phodiesterase 5 nor pyruvate dehydrogenase was specifically
altered in doxorubicin+BYL719-treated hearts, and they do
not correlate with RV dilation and dysfunction in the manner
that we observed with p38 activation.

Inhibition of p38 Signaling Partially Reversed the
Biventricular Cardiomyopathy
Because p38 MAPK inhibitors are currently in clinical trials,36

we tested a rescue strategy using a p38 MAPK inhibitor in our
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doxorubicin+BYL719 model. Inhibition of p38 MAPK with
SB202190 in the doxorubicin+BYL719 group attenuated
weight loss and heart atrophy, with a trend toward retaining
whole body fat and lean mass (Figure 6A). Cardiomyocyte
cross-sectional area was increased in the LV and RV with p38
inhibition (Figure 6B). Invasive pressure-volume analysis of

the RV showed reduced ventricular volume associated with
increased relative EF and cardiac output (Figure 6C and
Table 3) in response to p38 kinase inhibition. The LV stroke
volume and fractional shortening increased, which was
consistent with improved RV parameters (Figure 6D and
Table 3). Dihydroethidium fluorescence, as a marker of
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oxidation-reduction stress, was not significantly decreased by
p38 MAPK inhibition (Figure 6E), consistent with p38 activa-
tion being primarily a downstream effect rather than an
upstream cause of oxidation-reduction stress. Electrocardio-
graphic analysis showed normalization of the QT interval with
p38 inhibition (Figure 6F). These results support a mechanistic
role for p38 activation in mediating the adverse doxoru-
bicin+BYL719 effects on the heart and the potential for p38
MAPK inhibition as a therapeutic strategy.

Discussion

The emergence of targeted cancer therapies contributes to
the cumulative risk for heart disease because they are often
used in combination with chemotherapeutic agents, such as
anthracyclines, and in patients with risk factors for heart
disease.4–9 A striking example of this is the growing list of
tyrosine kinase inhibitors indirectly blocking upstream or
downstream PI3Ka signaling and direct PI3Ka inhibitors that

Table 2. Heart Function in Doxorubicin-Treated PI3K Cre Mice

Variable Flx Flx Doxorubicin Cre Cre Doxorubicin P Value

LV echocardiography, n 8 7 7 8 . . .

LVIDd, mm 3.9�0.04 3.6�0.24 4.1�0.14 3.5�0.33 *

LVIDs, mm 2.7�0.06 2.6�0.23 3.0�0.10 2.7�0.24 NS

LVFS, % 30.0�0.7 28.3�2.0 28.5�0.7 24.1�2.8 NS

LVEF, % 57.9�1.1 55.4�3.2 55.5�1.1 48.0�4.4 NS; P=0.095*

IVRT, ms 15.0�0.5 16.8�2.0 12.1�0.6 19.2�1.5 *

IVCT, ms 11.2�1.0 12.4�1.2 10.3�0.3 14.2�0.9 *

E/A 1.5�0.1 1.5�0.2 1.6�0.2 1.7�0.1 NS

E0/A0 1.22�0.06 0.93�0.07 1.24�0.04 0.95�0.07 *

LV PV loops, n 8 7 6 7 . . .

HR, bpm 439�15 406�13 439�11 341�19 †

ESP, mm Hg 90.1�3.0 87.4�2.6 91.1�2.2 86.5�3.7 NS

EDP, mm Hg 7.4�1.1 5.9�0.8 4.9�0.9 6.6�1.2 NS

dP/dtmax, mm Hg/s 8359�483 7509�868 7933�342 6231�356.5 *

�dP/dtmax, mm Hg/s �6354�357 �5211�648 �6121�305 �4397�250 *

ESV, lL 12.1 �3.2 12.5 �3.5 10.9 �2.2 7.2 �1.2 NS

EDV, lL 34.0�4.9 31.1�2.7 33.9�2.3 24.6�2.4 NS

SV, lL 22.6�3.2 18.6�3.7 24.5�2.1 17.4�1.5 *

CO, mL/min 9.9�1.5 7.6�1.6 10.5�0.6 5.9�0.6 *

LVEF, % 65.1�4.4 62.5�10.7 69.9�4.8 71.6�3.6 NS

ESPVR 5.9�0.1 3.8�0.7 4.7�0.5 3.7�0.8 *

EDPVR 0.14�0.03 0.13�0.02 0.10�0.02 0.09�0.03 NS

RV PV loops, n 8 9 7 7 . . .

HR, bpm 416�20 403�17 397�24 393�38 NS

ESP, mm Hg 22.2�1.0 23.1�1.5 20.7�0.9 27.0�3.7 NS; P=0.081*

EDP, mm Hg 0.6�0.3 1.2�0.7 1.2�0.4 2.1�1.2 NS

Pmax, mm Hg 25.9�0.7 25.5�1.4 23.2�1.0 29.0�3.1 NS; P=0.081†

Values are mean�SEM. A 2-way ANOVA was performed. Flx denotes LoxP sites inserted flanking the p110 alpha gene. Cre denotes mice with the above flx sites and the addition of Cre
recombinase driven by the alpha Myosin Heavy Chain promoter. LV echocardiography was performed on mice treated with doxorubicin for 5+1 to 2 weeks of follow-up; LV (Left ventricle)
PV (pressure/volume) loops were performed at 5+2 weeks of follow-up; RV (Right ventricle) PV loops were performed at 4.5 weeks of treatment. Bpm indicates beats per minute; CO,
cardiac output; dP/dtmax, maximum rate of positive pressure change; �dP/dtmax, maximum rate of negative pressure change; E/A, pulse-wave Doppler early filling/atrial systole; E0/A0 ,
tissue Doppler from mitral valve movement from early filling and atrial systole; EDP, end-diastolic pressure; EDPVR, end-diastolic PV relationship; EDV, end-diastolic volume; ESP, end-
systolic pressure; ESPVR, end-systolic PV relationship; ESV, end-systolic volume; HR, heart rate; LVEF, LV ejection fraction; LVFS, LV fractional shortening; LVIDd, LV internal dimension
diastolic; LVIDs, LV internal dimension systolic; IVCT, isovolumic contraction time; IVRT, isovolumic relaxation time; NS, not significant; PI3K, phosphoinositide 3-kinase; Pmax, maximum
pressure; SV, stroke volume.
*P≤0.05 for doxorubicin effect.
†P≤0.05 for Cre+doxorubicin.
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have the potential to be broadly used in both patients with
identified PI3K pathway mutations as well as general adjuvant
therapies.37–39 The compounded cardiovascular risk of PI3Ka
inhibitor use in vulnerable groups, such as women with breast
cancer, is particularly relevant given the high prevalence of
p110a gain-of-function mutations and the large number of

clinical trials currently in progress.40,41 Breast cancer sur-
vivors have an increased risk of cardiovascular death
compared with a cancer-free comparison cohort,42 which
could be compounded if therapies that increase cancer
survival also increase cardiovascular risk when coupled
with comorbidities.43 Preclinical studies can be used to
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understand the type and mechanism of the cardiac risk of
PI3Ka inhibition in combination with other perturbations or
comorbidities.

We chose to study female animals because of the high
prevalence of female patients receiving PI3K pathway
inhibitors, including trastuzumab, which acts on the HER2
receptor upstream of PI3K, as well as those in clinical trials for
PI3K inhibitors. Sex dimorphic responses in heart remodeling
are discussed below, but we have not investigated the
different responses to PI3Ka inhibition/deletion in combina-
tion with anthracycline therapy in this current study. Using
female murine models, we demonstrated that combined
doxorubicin and PI3Ka inhibition resulted in increased mor-
tality and a distinct biventricular remodeling (Figure 7),
documented by echocardiography and invasive pressure-
volume analysis. Biventricular remodeling is best illustrated
in the video images of the B-mode echocardiography. RV
dilation and reduced fractional shortening with reduced
cardiac output are matched to an LV with reduced chamber
volumes, likely driven by ventricular interdependence with the
potential role of cardiac atrophy. RV dilation and ventricular
interdependence also likely lead to impaired LV filling and
diastolic dysfunction. Invasive, closed chest measurement of

the RV showed normal peak and filling pressures in the
presence of PI3Ka inhibition and indicated that pulmonary
artery hypertension was not present in our model, consistent
with the lack of concentric cardiomyocyte hypertrophy in the
RV and normal lung morphological characteristics. We
recently reported that deletion or reduction of PI3Ka in
cardiomyocytes causes accelerated dilation in a pressure-
overload model because of dysregulation of the actin
cytoskeletal-severing enzyme gelsolin.44 We propose that
PI3Ka inhibition/deletion may have a similar or even greater
detrimental effect in pulmonary hypertension models in which
the RV experiences increased afterload.

Rodent models of doxorubicin toxicity often report dilated
LV end-diastolic dimensions,45–47 whereas we observed
reduced LV dimensions in our long-term treatment using
female mice, possibly because of sex dimorphic responses to
these therapies (sex differences were previously reported in
response to doxorubicin)47 or differences in dosage protocols.
More important, our findings have been recapitulated by
recent clinical studies showing reduced LV mass in response
to anthracycline therapy in patients with breast cancer.20,21

Our chemotherapy regimen also resulted in significant weight
loss and reduced heart mass and LV chamber dimensions;
heart mass is normally closely correlated with body mass, and
anorexia also causes reduced heart mass.48 We observed
weight loss despite normal feeding, indicating a catabolic
state not driven by food aversion caused by the treatments.
The LV may be partially protected from atrophy because of its
higher systolic pressures, which activate prohypertrophy/
mass-maintaining signaling in comparison to the RV; consis-
tent with this, in a tumor-driven cachexia model, RV mass was
preferentially decreased.49 In patients with advanced heart
failure, cachexia correlated with reduced RV function and
worse outcomes compared with patients without cachexia.50

Surprisingly, we did not observe significant levels of
terminal deoxynucleotidyl transferase-mediated dUTP nick-
end labeling staining, fibrosis, or inflammation in doxorubicin-
and/or BYL719-treated hearts, indicating that cell death was
unlikely to be a significant driver of the biventricular
remodeling and dysfunction that we observed. PI3K signaling
is a well-known regulator of both cell death and muscle
growth; in this study, the dominating phenotype was one of
cardiac atrophy, but not cell death. We speculate that drug
dose, duration, species, age, and sex could all influence the
extent to which doxorubicin and PI3K inhibition have an end
effect of cell death and/or muscle atrophy in the heart. Our
recent findings (ie, current patients with breast cancer
receiving trastuzumab and anthracycline therapy have
reduced heart mass and biventricular dysfunction compared
with sex- and age-matched controls)19 support the transla-
tional relevance for our findings of heart atrophy in mice
receiving doxorubicin and BYL719.

Table 3. LV and RV Echocardiography and Hemodynamics:
Doxorubicin+BYL719 With p38 MAPK Inhibition (SB202190)

Treatment
Doxorubicin+
BYL719 (n=9)

Doxorubicin+
BYL719+
SB202190 (n=9) P Value

LV echocardiography

LVIDd, mm 3.29�0.10 3.55�0.05 *

LVIDs, mm 2.18�0.08 2.22�0.07 NS

LVFS, % 33.7�2.0 37.4�1.5 *

LVEF, % 63.3�2.6 68.2�1.9 *

LVSV, lL 28.2�2.6 35.8�1.5 *

RV PV loops

HR, bpm 432.3�19.6 458.2�17.6 NS

ESP, mm Hg 23.3�1.3 24.2�0.9 NS

EDP, mm Hg �0.6�0.9 0.9�0.4 NS

Pmax, mm Hg 26.8�1.2 28.2�0.7 NS

SV, % relative 100�16 188�34 *

RVEF, % relative 100�14 168�23 *

Values are mean�SEM. Relative values indicated are given with vehicle treated
arbitrarily set at 100. LV (Left ventricle) echocardiography was performed; RV (Right
ventricle) PV (pressure volume) loops were performed at 3.5 weeks of treatment. Bpm
indicates beats per minute; EDP, end-diastolic pressure; ESP, end-systolic pressure; HR,
heart rate; LVEF, LV ejection fraction; LVFS, LV fractional shortening; LVIDd, LV internal
dimension diastolic; LVIDs, LV internal dimension systolic; LVSV, LV stroke volume; NS,
not significant; Pmax, maximum pressure.
*P≤0.05, independent, 2-tailed t test.
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The pathological processes connected to doxorubicin
treatment combined with PI3Ka inhibition we have identified,
including oxidative stress indicated by dihydroethidium stain-
ing and high levels of p38 MAPK activation, were present
similarly in both the LV and RV (Figure 5A and 5C); however,
the end morphological changes were distinct between the 2
ventricles. The RV has several inherent differences from the
LV, which may contribute to the distinct ventricular remod-
eling in response to chemotherapy and PI3K inhibition,
potentially also in a sex-distinct manner. The RV has reduced
defense against oxidation-reduction stress,51 and molecular
changes underpinning ventricular remodeling vary by type and
magnitude between the LV and RV.52,53 Genetic variation in
estradiol metabolism and androgen signaling is associated
with RV morphological characteristics in a sex-specific
manner.54 RV cardiomyocytes are predominantly longitudinal
in orientation, whereas LV myocytes are more radially
orientated.55 Sex differences in RV remodeling are also seen
in obese women who exhibit RV remodeling with increased
end-diastolic dimension, which is not present in obese men.56

The clinical relevance of our findings is further strengthened

by the observation from the INTERMACS (Interagency Registry
for Mechanically Assisted Circulatory Support), in which
patients with chemotherapy-related cardiomyopathy receiving
Ventricular Assist Devices were predominantly women and
more likely to require RV assistance.57 Indeed, in patients
with cancer, female sex is an independent risk factor for
cardiac abnormalities after treatment with doxorubicin in
association with a greater decrease in LV mass.58

We identified that the activation of the p38 MAPK signaling
pathway in both the LV and RV may underlie our observed
phenotype in female hearts with cardiotoxicity. Doxorubicin
can cause p38 activation in cardiomyocytes through negative
modulation of the PI3K pathway and promotion of an atrophy
gene program,30 and p38 MAPK activation can have a direct
negative inotropic effect at the level of myofilament Ca2+

sensitivity.59 Activation of p38 promotes increased energy
expenditure and mitochondrial uncoupling in muscle,31 and
p38 inhibition has beneficial effects in models of muscle
atrophy in tumor-bearing cancer cachexia models.25,60 In
female human hearts with dilated cardiomyopathy, we found
that both p38 MAPK activation and oxidation-reduction stress

Normal heart

RTKs

(HER2, others)

PI3K

cardiom
yocyte

growth 
factors

trastuzumab
RTK inhibitors
PI3K inhibitors

Reduced LV mass
RV dilation
RV reduced %EF

cachexia
p38 MAPK
redox stress
other?

chemotherapy
(anthracyclines, others) other comorbidities?

PI3K pathway targeted therapies
Remodeled heart

PI3K pathway inhibition resulting in biventricular heart remodeling

Figure 7. Illustration of proposed effects of the phosphoinositide 3-kinase (PI3K) pathway inhibition on
the heart in the setting of anthracycline cancer therapy. PI3K pathway inhibition, a central pathway
downstream of receptor tyrosine kinases (RTKs), such as HER2 (Human Epidermal Growth Factor Receptor
2), promotes biventricular remodeling with reduced left ventricular (LV) mass and right ventricular (RV)
dilation and reduced ejection fraction (EF) in the setting of chemotherapy involving wasting syndrome
(cachexia), MAPK (p38 mitogen-activated protein kinase) activation, and oxidation-reduction stress. LA
indicates left atrium; MAPK, mitogen-activated protein kinase; PA, pulmonary artery; RA, right atrium.
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were increased, with greater p38 activation in the RV
compared with the LV hearts with dilated cardiomyopathy,
possibly indicating an increased propensity for pathological
p38 activation in the RV compared with the LV. In patients
with cancer and tumor types and therapies that place them at
a high risk for cachexia, PI3K inhibition may exacerbate and
possibly potentiate pathological weight loss, potentially
through increased p38 signaling. Activation of p38 has been
linked with skeletal muscle atrophy in cancer cachexia60 as
well as heart dysfunction and remodeling,61 and p38 MAPK
inhibition may be beneficial for both heart36,61 and cancer
treatment.62 A limitation of our current study is that we used
cancer-free mice, so we have not addressed the additional
effects that cancers can have on promoting cachexia. Also,
the p38 MAPK inhibitor SB202190 has been reported to
inhibit other kinases in vitro,63 so we cannot rule out possible
off-target effects contributing to the rescue phenotype we
observed. Activation of p38 MAPK signaling is likely only one
of many molecular changes contributing to pathological
processes with doxorubicin/BYL719 treatment.

We have not assessed the effects of doxorubicin/BYL719
dual treatment on topoisomerase-IIb, a recognized mediator
of doxorubicin-induced damage in the heart.45 Interestingly,
trastuzumab has been reported to cause downregulation of
topoisomerase-IIb in cultured human cardiomyocytes64;
future studies are needed to determine whether PI3Ka
inhibition also has an effect on topoisomerase-IIb expression
or regulation. To our surprise, FOXO1 signaling, which is
implicated in skeletal muscle atrophy and regulated by PI3K
signaling,65 was not activated in the heart in this study. We
have found previously that assessment of in vivo signaling
through the protein kinase B axis downstream of PI3Ka
requires close control of the input signals, perhaps the most
dominant one being postprandial insulin signaling. In that
case, fasting and carefully dosed administration of insulin
were required to show that PI3Ka was required for protein
kinase B activation.27 Our current study prioritized heart
function assessment with invasive cannulation of the LV or RV
as terminal procedures, and we did not control prior feeding.
Furthermore, isoflurane anesthesia, which was required for
heart cannulation, can also activate the protein kinase B
pathway.66 For these reasons, we believe our current study
provides a strong rationale for the relevance of PI3Ka
inhibitors for the maintenance of heart mass and morpholog-
ical characteristics; however, there is much more work to be
done to fully understand the signaling cascades downstream
of PI3Ka that are responsible for these effects, and we cannot
rule out a relevant role for FOXO1.

Our study shows that in female preclinical models, PI3Ka
inhibition and doxorubicin resulted in marked RV dilation and
dysfunction in the setting of weight loss and heart atrophy.
These changes were linked to increased pathological p38

MAPK activation coupled with oxidation-reduction stress. We
suspect that weight loss and adverse heart remodeling will be
key safety indicators once PI3Ka inhibitors are used for
extended periods. PI3Ka inhibition may soon become a
mainstay in multidrug combination cancer therapy; a search
for “PI3K” on clinicaltrials.gov yielded 472 studies, and
“PI3K+cancer” gives 429 studies, most of which use a PI3K
inhibitor, often in combination with other therapies. We
believe there is a need for a clinical study of heart mass and
biventricular morphological characteristics and function in a
broad cohort of patients receiving PI3Ka inhibitors. Postmar-
keting surveillance of patients receiving PI3K inhibitors will
also be crucial for assessing the “real-world” effects of these
drugs when patients are included who may have been
excluded from clinical trials because of compound cardiovas-
cular risks. If PI3K inhibitors do cause heart remodeling in
patients with cancer, such as heart atrophy and possible RV
dilation, a further question will be to address under what
circumstances these effects are reversible on discontinuation
of treatment, and at what point these effects are permanent
and possibly worsening after discontinuation of treatment.
Our current animal study focuses on the PI3Ka isoform,
although many PI3K inhibitors target multiple PI3K isoforms
that are broadly expressed, creating the potential for
additional adverse effects. Our study uses overlapping
administration of anthracycline and PI3K inhibitor, but clinical
trials of PI3K inhibitors do not currently combine these
therapies at the same time; the significance of prior
anthracycline therapy versus concurrent anthracycline ther-
apy in combination with PI3K inhibitors for adverse effects on
the heart is not clear. Concurrent administration of anthra-
cyclines with mTOR inhibitors has been performed in
patients,67 and similar studies may eventually be performed
with PI3K inhibitors. More studies are needed to fully
characterize the significance of different PI3K isoform
inhibition in combination with other cancer therapies and
comorbidities.
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Data S1. 

 

Supplemental Methods 
 

Human Heart Tissue Collection 

Human hearts were collected at the Mazankowski Alberta Heart Institute. Non-failing control 
(Ctr) hearts were obtained from the Human Organ Procurement and Exchange (HOPE) program, 
and non-ischemic, dilated cardiomyopathy (DCM) hearts were collected from patients 

undergoing heart transplant as part of the Human Explanted Heart Program (HELP).1, 2
 

 
Echocardiography 

Heart imaging was performed by transthoracic echocardiogram under isoflurane anesthesia (1.5- 

2%) using Vevo 770 or 3100 with 30MHz transducer (VisualSonics) as previously described.3 

Echocardiography recordings and analysis were performed by an operator blinded to treatment 
groups and experimental hypothesis. 

 

Electrocardiogram (ECG) 

Surface electrocardiogram was recorded with mice under light anesthesia (1% inhaled 

isoflurane) on a heated pad to maintain body temperature using DSI Ponema P3Plus version 5 

with measurements recorded in lead I. P and QRS waves were identified by the software, and T 

waves were manually marked where the wave returned to the isoelectric line. 

 
Pressure Volume (PV) loops 

Invasive hemodynamic measurements were performed with closed chest under isoflurane 

anesthesia (1.5-2%) with a 1.2F pressure volume catheter (Transonic Scisense). For left ventricle 

measurements, the catheter was inserted at the right carotid artery and moved forward, using the 

pressure trace to determine when the catheter was inside the left ventricle. For right ventricle 

measurements, the catheter was inserted at the right jugular vein and advanced into the right 

ventricle, using the pressure trace to indicate when the catheter reached the right ventricle. Due 

to the irregular chamber shape of the right ventricle, absolute volumes could not be measured, so 

volumes are compared as relative changes in magnitude. Cannulation recordings and analysis 

were performed by an operator blinded to treatment groups and experimental hypothesis. 

 

Body weight, composition and food consumption 

Body weight was measured once per week and drug dosing adjusted. Body composition was 

measured in live, conscious mice using a NMR-MRI scanner (EchoMRI). Food consumption 

was estimated by weighing food in a cage at 24hr intervals, with care taken to find any fragments 

that may have fallen into the bedding. Food consumption was then expressed relative to the total 

body weight of the animals in that cage (2-3 animals/cage); individual caging of animals was 

avoided to reduce stress on the animals. 

 
Blood glucose measurement 

Blood glucose was measured (Bayer monitor and test strips) from a tail vein prick in mice after 

undergoing an 8 hour daytime fasting period. 
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Western blots 

Western blots were performed as follows: tissue was homogenized in CelLytic Lysis Reagent 

(Sigma) with protease inhibitor cOmplete (Roche), 1 tablet/10mL, and phosphatase inhibitor 

phosSTOP (Roche), 1 tablet/10mL, using a TissueLyser II (Qiagen). Protein concentrations were 

standardized using a Bradford assay (Bio-Rad); samples were boiled in a denaturing Laemmli 

load dye (Bio-Rad) and separated by electrophoresis on a polyacrylamide gel and transferred to a 

PVDF membrane (Immobilon; Millipore). Membranes were probed using antibodies shown in 

the following table at 1:1000-1:2000 concentration in Tris buffered saline solution with 1.5% 

BSA. Samples were loaded with all experimental groups together in a repeating pattern of single 

biological replicates. For experiments containing 4 groups, a total of 3 biological replicates were 

loaded onto one 15 well gel and a common inter-gel control sample, made from mixing several 

samples, was used to normalize quantification and comparison of bands across several gels. All 

numbers reported are biological replicates. 

 
Target Protein Catalogue number Company 

PDE5a ab14672 Abcam 

P-PDH AP1062 EMD Millipore 

P-p38 4511 Cell Signaling 

p38 total 9212 Cell Signaling 

FOXO1 2880 Cell Signaling 

SMAD 2/3 5678 Cell Signaling 

Histone H3 4499 Cell Signaling 

 

Gene Expression 

RNA was extracted by homogenizing (TissueLyser II) frozen tissue samples in TRIzol according 

to the manufacturer’s instructions, and cDNA was synthesized. Gene expression was measured 

by cDNA quantification using real-time PCR primers and probes (TAQMAN) using a 

Lightcycler 480 (Roche). Primers (forward and reverse) and probes (all ThermoFisher) are as 

follows: 
Protein(gene) Type Sequence 

β- MHC 

(Myh7) 
Forward: 

Reverse: 

Probe: 

5'-GTGCCA AGG GCC TGA ATG AG-3' 

5'-GCA AAG GCT CCA GGT CTG A-3' 

5'-FAM-ATC TTG TGC TAC CCA GCT CTA A-TAMRA- 
3' 

ANF 

(Nppa) 
Forward: 

Reverse: 
Probe: 

5'-GGA GGA GAA GAT GCC GGT AGA-3' 

5'-GCT TCC TCA GTC TGC TCA CTC A-3' 
5'-FAM-TGA GGT CAT GCC CCC GCA GG-TAMRA-3’ 

Atrogin-1 
(Fbxo32) 

 ThermoFisher catalogue # 4331182 

TNF-α 

(Tnfa) 
Forward: 

Reverse: 
Probe: 

5'- ACAAGGCTGCCCCGACTAC-3’ 

5'- TTTCTCCTGGTATGAGATAGCAAATC-3’ 
5'-FAM-TGCTCCTCACCCACACCGTCAGC-TAMRA-3’ 

IL-6 

(Il6) 

Forward: 

Reverse: 

Probe: 

5'-ACAACCACGGCCTTCCCTACTT-3’ 

5'-CACGATTTCCCAGAGAACATGTG-3’ 

5'-FAM-TTCACAGAGGATACCACTCCCAACAGACCT- 

TAMRA-3’ 
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IL-1β 

(Il1B) 

Forward: 

Reverse: 

Probe: 

5'-AACCTGCTGGTGTGTGACGTTC-3’ 

5'-CAGCACGAGGCTTTTTTGTTGT-3’ 

5'- FAM-TTAGACAGCTGCACTACAGGCTCCGAGATG- 

TAMRA-3’ 
 

Subcellular Fractionation 

Fractionation of cell nuclei from heart tissue was performed as previously described.4 Tissue was 

homogenized in hypotonic lysis buffer, spun 5min at 100g, then SN spun 10min at 2,000g. The 

resulting SN was considered the non-nuclear fraction, and the pellet was considered the rough 

nuclear fraction. The rough nuclear fraction was further purified by ultracentrifugation loaded 

onto hypotonic lysis buffer + 2.4M sucrose and spun 90min at 100,000g. The pellet was then 

collected as the final nuclear fraction. The non-nuclear fraction was not further separated into 

membrane and cytosolic fractions. 
 

Histological Analysis 

Hearts were arrested in 1M KCl to cause uniform diastole, then fixed in 10% buffered formalin, 
before paraffin imbedding. Short axis, formalin fixed heart sections were stained with Alexa 

Fluor 488 conjugated Wheat Germ Agglutinin (WGA) (ThermoFisher) to outline cardiomyocyte 

cell membranes for cross sectional area measurement.5 A region of myocardium with cross 
sectional cardiomyoctes was identified and the area of over 50 cells were measured and averaged 

to make each single biological replicate shown in the figures. 

Terminal deoxynucleotidyltransferase-mediated 2’-deoxyuridine-5’-triphosphate nick-end 

labeling (TUNEL) staining (Promega) for apoptotic cells was performed according to the 

manufacturer’s instructions. 3-5 randomly chosen regions of the LV and RV were analyzed at 
100x magnification from a total of 3 hearts per group. Tissue from a mouse heart that had 

undergone LAD ligation to cause a myocardial infarction (MI), collected at 1day post-MI, was 

used as a positive control.4 Myocardial Fibrosis was visualized by Masson Trichrome staining 

and Picro Sirius Red staining.6 Lungs were fixed by cannulation of the trachea and infusing 10% 
buffered formalin at a height of 10cm; then, a second cannula was inserted into the RV and 

advanced into the pulmonary artery, tied off, and infused with 10% formalin at a height of 20cm 
for 20min. Paraffin embedded lung sections were stained with Trichrome. Heart sections frozen 

in OCT media were stained with dihydroethidium (DHE) as previously described.7 

Approximately 10 images were randomly selected and the intensity quantified by an operator 
blinded to experimental groups and the hypothesis of the experiment. The average of these 

experimental replicates were averaged to determine the value for each individual biological 
replicate. 

 

Statistics, graphs and randomization 

Data was graphed using box and whisker plots dividing the data into quartiles with the box 

representing the first and third quartile and the internal band representing the second quartile 

(median) (Origin 2016); the mean was indicated by a small square, and whiskers show maximum 

and minimum values within 1.5 of the interquartile range of the box, and individual values are 

indicated when greater than 1.5x the interquartile range from the upper or lower limit of the box. 

Statistical analysis was performed using SPSS (IBM SPSS Statistics for Windows, Version 23.0. 

Armonk, NY: IBM Corp. Released 2015.). 
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Comparisons between two-level, single factors, used unpaired, two tailed t-tests. A two-way 

ANOVA was used for two level, two factor analysis to evaluate the effects of the treatment 

doxorubicin and BYL-719 or genetic deletion of p110α; when the interaction was not significant, 

a main effects only model was estimated. Cox regression was used for survival analysis. An a 

priori power calculation was not performed due to the exploratory and novel nature of this study. 

Animals were randomized at the cage level, with all mice within a cage receiving the same 

treatment. Animal experiments were performed in cycles with all treatment groups represented 

and unbiased, random assignment of cages to different treatments. Allocation concealment was 

not performed and was not practical with the visible difference between doxorubicin and saline. 
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Figure S1. Phenotyping of doxorubicin and BYL719 treated mice and hearts. 
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(A) Blood glucose levels after 8hrs fasting (n=4-7). (B) Pulmonary artery acceleration time (PAAT) divided by 
ejection time (PAAT/ET), measured in pulse wave Doppler echocardiography (n=7-12). (C) Average left ventricle 
(LV) myocyte cross sectional area is shown as a percentage of right ventricle (RV) myocyte cross sectional area. 
(D) Terminal deoxynucleotidyltransferase- mediated 2’-deoxyuridine-5’-triphosphate  nick-end  labeling (TUNEL) 
and nuclear propidium iodide (PI) (n=3) from 4+2 week treated mice; one day post myocardial infarc- tion (MI) 
was used as a positive control. (E) Expression of inflammatory markers in LV and RV tissue in 3.5 weeks treated 
mice (n=7-9). (F) Representative Masson’s Trichrome staining and G, PicroSirius Red (PSR) staining of vehicle 
(Veh) and doxorubicin + BYL719 (Dox+BYL) treated LV and RV sections (n=4) from 4+2 week treated mice. †Dox 
effect, ‡BYL effect or ◊Dox+BYL interaction indicates P≤0.05 in two-way ANOVA. 
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Figure S2. Surface Electrocardiogram. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vehicle Dox BYL Dox+BYL 

n (9) (9) (9) (8)  

HR, bpm 450 ±22 460 ±18 439 ±18 422 ±13 ns 

PR (ms) 41.3 ±1.4 39.7 ±1.2 39.9 ±2.1 40.6 ±1.4 ns 

QRS (ms) 11.7 ±0.5 10.9 ±0.3 11.1 ±0.7 12.0 ±0.5 ◊ 

QT (ms) 41.3 ±1.4 53.8 ±2.6 60.7 ±2.8 66.2 ±2.9 ‡ 

QTcB (ms) 43.4±1.9 47.2 ±2.2 51.6 ±1.7 55.2 ±1.9 ‡ 

QTcF (ms) 45.7±2.2 49.3 ±2.3 54.4 ±2.0 58.6 ±2.2 ‡ 

 
Example electrocardiogram (ECG) traces from WT mice under doxorubicin (Dox) and BYL719 
(BYL) or vehicle (Veh) treatment in lead 1; ECG, electrocardiogram; HR, heart rate (recorded at 
ECG and subsequent pressure/volume (PV) catheter insertion at the end of 3.5 week treatment 
protocol); ECG derived PR interval, QRS duration and QT interval with QTc (corrected) according 
to Bazett’s (B) and Fridericia’s (F) formulas. All values shown are means +/- SEM. †Dox effect, 
‡BYL effect or ◊Dox+BYL interaction indicates P≤0.05 in two-way ANOVA. 
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Figure S3. Images of formalin fixed lungs stained with trichrome. 
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(A) Example images of trichrome stained lungs inflated through cannulation of the trachea and 
infusion with 10% buffered formalin from no-Dox, p110α flx/flx mice and from 4 weeks Dox treated, 
p110α flx/flx Cre transgenic mice. (B) Example images of trichrome stained lungs from 3.5 weeks 
vehicle and Dox+BYL treated mice without lung inflation. Arrows point to artery walls. 
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Figure S4. Disease markers and atrophy signaling in doxorubicin and BYL719 treated mice.  
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(A) Expression of beta-myosin heavy chain (βMHC) was increased with doxorubicin (Dox) and atrial nature-t   
ic factor (ANF) was not statistically increased in Dox+BYL719 (BYL) (n=7-9). (B) Representative Western blots 

(P.S.) from 3.5 week protocol separated into nuclear and non-nuclear fractions showing decreased nuclear 
FOXO1 in the RV with Dox treatment; Smad2/3 was only detected in non-nuclear fractions; histone H3 
was used as a nuclear marker (n=4-6). (C) Expression of atrogin-1 (Fbxo32) in the LV and RV (n=7-9). (D,E) 
Western blots in whole LV and RV tissue lysates show a Dox dependent increase in PDE5 in the LV, and a 
BYL dependent increase in phosphorylated Pyruvate Dehydrogenase (PDH) that is reduced by Dox in the 
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Supplemental Video Legends: 

 

Video S1. Example B-Mode Echocardiography at 4+2 Weeks in Dox/BYL treated mice. Example video recordings from 

all treatment groups showing reduced LV chamber volume and RV dilation and dysfunction in Dox+BYL treated group (3 

examples shown). Best viewed with Windows Media Player. 

 

Video S2. Example B-Mode Echocardiography at 5+2 Weeks in Dox treated PI3Kα Cre or Flx only mice. Example 

video recordings from all treatment groups showing reduced LV chamber volume and RV dilation and dysfunction in 

Dox+Cre treated group (2 examples shown). Best viewed with Windows Media Player. 
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