73 research outputs found

    Nonlinearity in a dynamo

    Full text link
    Using a rotating flat layer heated from below as an example, we consider effects which lead to stabilizing an exponentially growing magnetic field in magnetostrophic convection in transition from the kinematic dynamo to the full non-linear dynamo. We present estimates of the energy redistribution over the spectrum and helicity quenching by the magnetic field. We also study the alignment of the velocity and magnetic fields. These regimes are similar to those in planetary dynamo simulations.Comment: Accepted to Geophys. Astrophys. Fluid Dyna

    Initial conditions, Discreteness and non-linear structure formation in cosmology

    Get PDF
    In this lecture we address three different but related aspects of the initial continuous fluctuation field in standard cosmological models. Firstly we discuss the properties of the so-called Harrison-Zeldovich like spectra. This power spectrum is a fundamental feature of all current standard cosmological models. In a simple classification of all stationary stochastic processes into three categories, we highlight with the name ``super-homogeneous'' the properties of the class to which models like this, with P(0)=0P(0)=0, belong. In statistical physics language they are well described as glass-like. Secondly, the initial continuous density field with such small amplitude correlated Gaussian fluctuations must be discretised in order to set up the initial particle distribution used in gravitational N-body simulations. We discuss the main issues related to the effects of discretisation, particularly concerning the effect of particle induced fluctuations on the statistical properties of the initial conditions and on the dynamical evolution of gravitational clustering.Comment: 28 pages, 1 figure, to appear in Proceedings of 9th Course on Astrofundamental Physics, International School D. Chalonge, Kluwer, eds N.G. Sanchez and Y.M. Pariiski, uses crckapb.st pages, 3 figure, ro appear in Proceedings of 9th Course on Astrofundamental Physics, International School D. Chalonge, Kluwer, Eds. N.G. Sanchez and Y.M. Pariiski, uses crckapb.st

    Proton Driven Plasma Wakefield Acceleration

    Full text link
    Plasma wakefield acceleration, either laser driven or electron-bunch driven, has been demonstrated to hold great potential. However, it is not obvious how to scale these approaches to bring particles up to the TeV regime. In this paper, we discuss the possibility of proton-bunch driven plasma wakefield acceleration, and show that high energy electron beams could potentially be produced in a single accelerating stage.Comment: 13 pages, 4 figure

    Big bang simulation in superfluid 3He-B -- Vortex nucleation in neutron-irradiated superflow

    Full text link
    We report the observation of vortex formation upon the absorption of a thermal neutron in a rotating container of superfluid 3^3He-B. The nuclear reaction n + 3^3He = p + 3^3H + 0.76MeV heats a cigar shaped region of the superfluid into the normal phase. The subsequent cooling of this region back through the superfluid transition results in the nucleation of quantized vortices. Depending on the superflow velocity, sufficiently large vortex rings grow under the influence of the Magnus force and escape into the container volume where they are detected individually with nuclear magnetic resonance. The larger the superflow velocity the smaller the rings which can expand. Thus it is possible to obtain information about the morphology of the initial defect network. We suggest that the nucleation of vortices during the rapid cool-down into the superfluid phase is similar to the formation of defects during cosmological phase transitions in the early universe.Comment: 4 pages, LaTeX file, 4 figures are available at ftp://boojum.hut.fi/pub/publications/lowtemp/LTL-95009.p

    Influence of epithermal muonic molecule formation on kinetics of the ÎĽ\muCF processes in deuterium

    Full text link
    The non-resonant formation of ddÎĽdd\mu molecules in the loosely bound state in collisions of non-thermalized dÎĽd\mu atoms with deuterium molecules D2_2 has been considered. The process of such a type is possible only for collision energies exceeded the ionization potential of D2_2. The calculated rates of ddÎĽdd\mu formation in the above-threshold energy region are about one order of magnitude higher than obtained earlier. The role of epithermal non-resonant ÎĽ\mu-molecule formation for the kinetics of ÎĽ\muCF processes in D2_2 gas was studied. It was shown that the non-resonant ddÎĽdd\mu formation by dÎĽd\mu atoms accelerated during the cascade can be directly observed in the neutron time spectra at very short initial times.Comment: 6 pages, 5 figures, Proceedings of the International Conference on Exotic Atoms and Related Topics EXA-2011, Vienna, Sep 5-9, 201

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit

    A reconstruction of the initial conditions of the Universe by optimal mass transportation

    Get PDF
    Reconstructing the density fluctuations in the early Universe that evolved into the distribution of galaxies we see today is a challenge of modern cosmology [ref.]. An accurate reconstruction would allow us to test cosmological models by simulating the evolution starting from the reconstructed state and comparing it to the observations. Several reconstruction techniques have been proposed [8 refs.], but they all suffer from lack of uniqueness because the velocities of galaxies are usually not known. Here we show that reconstruction can be reduced to a well-determined problem of optimisation, and present a specific algorithm that provides excellent agreement when tested against data from N-body simulations. By applying our algorithm to the new redshift surveys now under way [ref.], we will be able to recover reliably the properties of the primeval fluctuation field of the local Universe and to determine accurately the peculiar velocities (deviations from the Hubble expansion) and the true positions of many more galaxies than is feasible by any other method. A version of the paper with higher-quality figures is available at http://www.obs-nice.fr/etc7/nature.pdfComment: Latex, 4 pages, 3 figure

    Did smokefree legislation in England reduce exposure to secondhand smoke among nonsmoking adults? Cotinine analysis from the Health Survey for England.

    Get PDF
    Background: On 1 July 2007, smokefree legislation was implemented in England, which made virtually all enclosed public places and workplaces smokefree. Objectives: We examined trends in and predictors of secondhand smoke exposure among nonsmoking adults to determine whether exposure changed after the introduction of smokefree legislation and whether these changes varied by socioeconomic status (SES) and by household smoking status. Methods: We analyzed salivary cotinine data from the Health Survey for England that were collected in 7 of 11 annual surveys undertaken between 1998 and 2008. We conducted multivariate regression analyses to examine secondhand smoke exposure as measured by the proportion of nonsmokers with undetectable levels of cotinine and by geometric mean cotinine. Results: Secondhand smoke exposure was higher among those exposed at home and among lower-SES groups. Exposure declined markedly from 1998 to 2008 (the proportion of participants with undetectable cotinine was 2.9 times higher in the last 6 months of 2008 compared with the first 6 months of 1998 and geometric mean cotinine declined by 80%). We observed a significant fall in exposure after legislation was introduced—the odds of having undetectable cotinine were 1.5 times higher [95% confidence interval (CI): 1.3, 1.8] and geometric mean cotinine fell by 27% (95% CI: 17%, 36%) after adjusting for the prelegislative trend and potential confounders. Significant reductions were not, however, seen in those living in lower-social class households or homes where smoking occurs inside on most days. Conclusions: We found that the impact of England’s smokefree legislation on secondhand smoke exposure was above and beyond the underlying long-term decline in secondhand smoke exposure and demonstrates the positive effect of the legislation. Nevertheless, some population subgroups appear not to have benefitted significantly from the legislation. This finding suggests that these groups should receive more support to reduce their exposure

    Quasistationary Stabilization of the Decay of a Weakly-Bound Level and Its Breakdown in a Strong Laser Field

    Get PDF
    Although it was pointed out about 10 years ago that an atomic decay rate might decrease as the intensity of a high-frequency laser field increases, there still does not exist any complete understanding of either the physical origin of this interesting nonlinear phenomenon or its dependence on the atomic and field parameters. Essentially, the problem consists in that the phenomenon requires a major modification of the standard picture of photoeffect in a strong laser field. In Reference #1 the origin of this stabilization is related to a particular distortion of an atomic potential by an intense monochromatic high-frequency field. This phenomenon is called adiabatic or quasistationary stabilization (QS). For the case of Rydberg levels, another (interference) mechanism of QS was suggested. Both theories predict an unlimited decrease of the decay rate (or of the width Γ of an atomic level, i.e., of the imaginary part of the complex quasienergy, ε = Re ε – iΓ/2 ) as the laser field amplitude increases. In recent years the idea of “dynamic stabilization” (DS) has become popular. It originates from the pulse form of a laser field rather than from any intrinsic property of the atom in a strong monochromatic field. Within this model the numerous simulations point also to the possibility of a breakdown of stabilization for the case of superintense short laser pulses. However, a recent paper, using the quasistationary quasienergy states (QQES) as an adiabatic basis for the laser pulse has shown that DS has the same (quasistationary) origin as QS. Finally, a number of authors deny the existence of stabilization, in particular, of QS for ionization from a short-range potential and of DS in pulsed fields. Obviously, these controversies and ambiguities are caused by the complexity of the numerical solution of the Cauchy problem for the time-dependent Schrödinger equation in a strong field and by the absence of analyses for exactly solvable analytical models. We analyze the exactly solvable problem of an electron in a three-dimensional, short-range potential and consider the two questions: does a QS-like behavior of the decay rate exist for this model, and, if so, is there an upper intensity limit of the QS regime
    • …
    corecore