2,226 research outputs found

    On finite--temperature and --density radiative corrections to the neutrino effective potential in the early Universe

    Full text link
    Finite-temperature and -density radiative corrections to the neutrino effective potential in the otherwise CP-symmetric early Universe are considered in the real-time approach of Thermal Field Theory. A consistent perturbation theory endowed with the hard thermal loop resummation techniques developed by Braaten and Pisarski is applied. Special attention is focused on the question whether such corrections can generate any nonzero contribution to the CP-symmetric part of the neutrino potential, if the contact approximation for the W-propagator is used.Comment: 11 pages, revtex styl

    Behavior of logarithmic branch cuts in the self-energy of gluons at finite temperature

    Get PDF
    We give a simple argument for the cancellation of the log(-k^2) terms (k is the gluon momentum) between the zero-temperature and the temperature-dependent parts of the thermal self-energy.Comment: 4 page

    Gravitational couplings of charged leptons in a medium

    Get PDF
    We calculate the leading order matter-induced corrections to the gravitational interactions of charged leptons and their antiparticles in a medium that contains electrons but not the other charged leptons, such as normal matter. The gravitational coupling, which is universal at the tree level, is found to be flavor-dependent, and also different for the corresponding antiparticles, when the corrections of O(α)O(\alpha) are taken into account. General expressions are obtained for the matter-induced corrections to the gravitational mass in a generic matter background, and explicit formulas for those corrections are given in terms of the macroscopic parameters of the medium for particular conditions of the background gases.Comment: Latex, axodraw, 39 pages. Added a few stylistic corrections and clarifying statements in the treatment of the photon tadpole diagra

    Structure of the Quark Propagator at High Temperature

    Get PDF
    In the high temperature, chirally invariant phase of QCD, the quark propagator is shown to have two sets of poles with different dispersion relations. A reflection property in momentum space relates all derivatives at zero-momentum of the particle and hole energies, the particle and hole damping rates, and the particle and hole residues. No use is made of perturbation theory.Comment: 8 pages, Latex twocolum

    Gauge Independence of Limiting Cases of One-Loop Electron Dispersion Relation in High-Temperature QED

    Get PDF
    Assuming high temperature and taking subleading temperature dependence into account, gauge dependence of one-loop electron dispersion relation is investigated in massless QED at zero chemical potential. The analysis is carried out using a general linear covariant gauge. The equation governing the gauge dependence of the dispersion relation is obtained and used to prove that the dispersion relation is gauge independent in the limiting case of momenta much larger than eTeT. It is also shown that the effective mass is not influenced by the leading temperature dependence of the gauge dependent part of the effective self-energy. As a result the effective mass, which is of order eTeT, does not receive a correction of order e2Te^2T from one loop, independent of the gauge parameter.Comment: Revised and enlarged version, 14 pages, Revte

    Two-loop Compton and annihilation processes in thermal QCD

    Get PDF
    We calculate the Compton and annihilation production of a soft static lepton pair in a quark-gluon plasma in the two-loop approximation. We work in the context of the effective perturbative expansion based on the resummation of hard thermal loops. Double counting is avoided by subtracting appropriate counterterms. It is found that the two-loop diagrams give contributions of the same order as the one-loop diagram. Furthermore, these contributions are necessary to obtain agreement with the naive perturbative expansion in the limit of vanishing thermal masses.Comment: Latex, 24 pages, postscript figures included with the package graphic

    Collective fermionic excitations in systems with a large chemical potential

    Get PDF
    We study fermionic excitations in a cold ultrarelativistic plasma. We construct explicitly the quantum states associated with the two branches which develop in the excitation spectrum as the chemical potential is raised. The collective nature of the long wavelength excitations is clearly exhibited. Email contact: [email protected]: Saclay-T93/018 Email: [email protected]

    Light-front Schwinger Model at Finite Temperature

    Full text link
    We study the light-front Schwinger model at finite temperature following the recent proposal in \cite{alves}. We show that the calculations are carried out efficiently by working with the full propagator for the fermion, which also avoids subtleties that arise with light-front regularizations. We demonstrate this with the calculation of the zero temperature anomaly. We show that temperature dependent corrections to the anomaly vanish, consistent with the results from the calculations in the conventional quantization. The gauge self-energy is seen to have the expected non-analytic behavior at finite temperature, but does not quite coincide with the conventional results. However, the two structures are exactly the same on-shell. We show that temperature does not modify the bound state equations and that the fermion condensate has the same behavior at finite temperature as that obtained in the conventional quantization.Comment: 10 pages, one figure, version to be published in Phys. Rev.

    THERMAL EFFECTS ON THE CATALYSIS BY A MAGNETIC FIELD

    Get PDF
    We show that the formation of condensates in the presence of a constant magnetic field in 2+1 dimensions is extremely unstable. It disappears as soon as a heat bath is introduced with or without a chemical potential. We point out some new nonanalytic behavior that develops in this system at finite temperature.Comment: 10 pages, plain Te

    Thermal Field Theory and Generalized Light Front Coordinates

    Full text link
    The dependence of thermal field theory on the surface of quantization and on the velocity of the heat bath is investigated by working in general coordinates that are arbitrary linear combinations of the Minkowski coordinates. In the general coordinates the metric tensor gμνˉg_{\bar{\mu\nu}} is non-diagonal. The Kubo, Martin, Schwinger condition requires periodicity in thermal correlation functions when the temporal variable changes by an amount i/(Tg00ˉ)-i\big/(T\sqrt{g_{\bar{00}}}). Light front quantization fails since g00ˉ=0g_{\bar{00}}=0, however various related quantizations are possible.Comment: 10 page
    corecore