160 research outputs found

    On the saturation of YAGO

    Get PDF
    YAGO is an automatically generated ontology out of Wikipedia and WordNet. It is eventually represented in a proprietary flat text file format and a core comprises 10 million facts and formulas. We present a translation of YAGO into the Bernays-Sch¨onfinkel Horn class with equality. A new variant of the superposition calculus is sound, complete and terminating for this class. Together with extended term indexing data structures the new calculus is implemented in Spass-YAGO. YAGO can be finitely saturated by Spass-YAGO in about 1 hour.We have found 49 inconsistencies in the original generated ontology which we have fixed. Spass-YAGO can then prove non-trivial conjectures with respect to the resulting saturated and consistent clause set of about 1.4 GB in less than one second

    Connection-Minimal Abduction in {E}L via Translation to {FOL} (Extended Abstract)

    Get PDF
    International audienceAbduction in description logics finds extensions of a knowledge base to make it entail an observation. As such, it can be used to explain why the observation does not follow, to repair incomplete knowledge bases, and to provide possible explanations for unexpected observations. We consider TBox abduction in the lightweight description logic EL , where the observation is a concept inclusion and the background knowledge is a TBox, i.e., a set of concept inclusions. To avoid useless answers, such problems usually come with further restrictions on the solution space and/or minimality criteria that help sort the chaff from the grain. We argue that existing minimality notions are insufficient, and introduce connection minimality. This criterion follows Occam’s razor by rejecting hypotheses that use concept inclusions unrelated to the problem at hand. We show how to compute a special class of connection-minimal hypotheses in a sound and complete way. Our technique is based on a translation to first-order logic, and constructs hypotheses based on prime implicates. We evaluate a prototype implementation of our approach on ontologies from the medical domain

    Connection-minimal Abduction in EL via Translation to FOL -- Technical Report

    Get PDF
    Abduction in description logics finds extensions of a knowledge base to makeit entail an observation. As such, it can be used to explain why theobservation does not follow, to repair incomplete knowledge bases, and toprovide possible explanations for unexpected observations. We consider TBoxabduction in the lightweight description logic EL, where the observation is aconcept inclusion and the background knowledge is a TBox, i.e., a set ofconcept inclusions. To avoid useless answers, such problems usually come withfurther restrictions on the solution space and/or minimality criteria that helpsort the chaff from the grain. We argue that existing minimality notions areinsufficient, and introduce connection minimality. This criterion followsOccam's razor by rejecting hypotheses that use concept inclusions unrelated tothe problem at hand. We show how to compute a special class ofconnection-minimal hypotheses in a sound and complete way. Our technique isbased on a translation to first-order logic, and constructs hypotheses based onprime implicates. We evaluate a prototype implementation of our approach onontologies from the medical domain.<br

    Decidability of the Monadic Shallow Linear First-Order Fragment with Straight Dismatching Constraints

    Get PDF
    The monadic shallow linear Horn fragment is well-known to be decidable and has many application, e.g., in security protocol analysis, tree automata, or abstraction refinement. It was a long standing open problem how to extend the fragment to the non-Horn case, preserving decidability, that would, e.g., enable to express non-determinism in protocols. We prove decidability of the non-Horn monadic shallow linear fragment via ordered resolution further extended with dismatching constraints and discuss some applications of the new decidable fragment.Comment: 29 pages, long version of CADE-26 pape

    Connection-Minimal Abduction in EL\mathcal{EL} via Translation to {FOL}

    Get PDF
    International audienceAbduction in description logics finds extensions of a knowledge base to make it entail an observation. As such, it can be used to explain why the observation does not follow, to repair incomplete knowledge bases, and to provide possible explanations for unexpected observations. We consider TBox abduction in the lightweight description logic EL , where the observation is a concept inclusion and the background knowledge is a TBox, i.e., a set of concept inclusions. To avoid useless answers, such problems usually come with further restrictions on the solution space and/or minimality criteria that help sort the chaff from the grain. We argue that existing minimality notions are insufficient, and introduce connection minimality. This criterion follows Occam’s razor by rejecting hypotheses that use concept inclusions unrelated to the problem at hand. We show how to compute a special class of connection-minimal hypotheses in a sound and complete way. Our technique is based on a translation to first-order logic, and constructs hypotheses based on prime implicates. We evaluate a prototype implementation of our approach on ontologies from the medical domain

    On the Expressivity and Applicability of Model Representation Formalisms

    Get PDF
    A number of first-order calculi employ an explicit model representation formalism for automated reasoning and for detecting satisfiability. Many of these formalisms can represent infinite Herbrand models. The first-order fragment of monadic, shallow, linear, Horn (MSLH) clauses, is such a formalism used in the approximation refinement calculus. Our first result is a finite model property for MSLH clause sets. Therefore, MSLH clause sets cannot represent models of clause sets with inherently infinite models. Through a translation to tree automata, we further show that this limitation also applies to the linear fragments of implicit generalizations, which is the formalism used in the model-evolution calculus, to atoms with disequality constraints, the formalisms used in the non-redundant clause learning calculus (NRCL), and to atoms with membership constraints, a formalism used for example in decision procedures for algebraic data types. Although these formalisms cannot represent models of clause sets with inherently infinite models, through an additional approximation step they can. This is our second main result. For clause sets including the definition of an equivalence relation with the help of an additional, novel approximation, called reflexive relation splitting, the approximation refinement calculus can automatically show satisfiability through the MSLH clause set formalism.Comment: 15 page

    Hierarchic Superposition Revisited

    Get PDF
    Many applications of automated deduction require reasoning in first-order logic modulo background theories, in particular some form of integer arithmetic. A major unsolved research challenge is to design theorem provers that are "reasonably complete" even in the presence of free function symbols ranging into a background theory sort. The hierarchic superposition calculus of Bachmair, Ganzinger, and Waldmann already supports such symbols, but, as we demonstrate, not optimally. This paper aims to rectify the situation by introducing a novel form of clause abstraction, a core component in the hierarchic superposition calculus for transforming clauses into a form needed for internal operation. We argue for the benefits of the resulting calculus and provide two new completeness results: one for the fragment where all background-sorted terms are ground and another one for a special case of linear (integer or rational) arithmetic as a background theory

    Abstract Canonical Inference

    Full text link
    An abstract framework of canonical inference is used to explore how different proof orderings induce different variants of saturation and completeness. Notions like completion, paramodulation, saturation, redundancy elimination, and rewrite-system reduction are connected to proof orderings. Fairness of deductive mechanisms is defined in terms of proof orderings, distinguishing between (ordinary) "fairness," which yields completeness, and "uniform fairness," which yields saturation.Comment: 28 pages, no figures, to appear in ACM Trans. on Computational Logi
    • …
    corecore