58,248 research outputs found
Recommended from our members
Full-length prepro-alpha-factor can be translocated across the mammalian microsomal membrane only if translation has not terminated.
We have previously shown that fully synthesized prepro-alpha-factor (pp alpha F), the precursor for the yeast pheromone alpha-factor, can be translocated posttranslationally across yeast rough microsomal (RM) membranes from a soluble, ribosome-free pool. We show here that this is not the case for translocation of pp alpha F across mammalian RM. Rather we found that a small amount of translocation of full-length pp alpha F is observed, but is solely due to polypeptide chains that were still ribosome bound and covalently attached to tRNA, i.e., not terminated. In addition, both signal recognition particle (SRP) and SRP receptor are required, i.e., the same targeting machinery that is normally responsible for the coupling between protein synthesis and translocation. Thus, the molecular requirements for targeting are distinct from posttranslational translocation across yeast RM. As termination is generally regarded as part of translation, the translocation of full-length pp alpha F across mammalian RM does not occur "posttranslationally," albeit independent of elongation. Most other proteins for which posttranslational translocation across mammalian RM was previously claimed fall into the same category in that ribosome attachment as peptidyl-tRNA is required. To clearly separate these two distinct processes, we suggest that the term posttranslational be reserved for those processes that occur in the complete absence of the translational machinery. We propose the term "ribosome-coupled translocation" for the events described here
Neutrino factory in stages: Low energy, high energy, off-axis
We discuss neutrino oscillation physics with a neutrino factory in stages,
including the possibility of upgrading the muon energy within the same program.
We point out that a detector designed for the low energy neutrino factory may
be used off-axis in a high energy neutrino factory beam. We include the
re-optimization of the experiment depending on the value of theta_13 found. As
upgrade options, we consider muon energy, additional baselines, a detector mass
upgrade, an off-axis detector, and the platinum (muon to electron neutrino)
channels. In addition, we test the impact of Daya Bay data on the optimization.
We find that for large theta_13 (theta_13 discovered by the next generation of
experiments), a low energy neutrino factory might be the most plausible minimal
version to test the unknown parameters. However, if a higher muon energy is
needed for new physics searches, a high energy version including an off-axis
detector may be an interesting alternative. For small theta_13 (theta_13 not
discovered by the next generation), a plausible program could start with a low
energy neutrino factory, followed by energy upgrade, and then baseline or
detector mass upgrade, depending on the outcome of the earlier phases.Comment: 23 pages, 10 (color) figures. Minor clarifications and changes. Final
version to appear in PR
On the Pressure Broadening in the Gamma Bands of Nitric Oxide
A quantitative investigation of the pressure broadening in the γ(0,0) and γ(1,0) bands of nitric acid established that the pressure effect is not abnormal as has sometimes been supposed and that the collision diameter of the excited NO molecule is approximately 3.8 Å
Book Review of \u3cem\u3eNouragues: Deep Rainforest Ecology\u3c/em\u3e, edited by Frans Bongers, Pierre Charles-Dominique, Pierre-Michel Forget and Marc Thery
Saccharomyces cerevisiae and Schizosaccharomyces pombe contain a homologue to the 54-kD subunit of the signal recognition particle that in S. cerevisiae is essential for growth.
We have isolated and sequenced genes from Saccharomyces cerevisiae (SRP54SC) and Schizosaccharomyces pombe (SRP54sp) encoding proteins homologous to both the 54-kD protein subunit (SRP54mam) of the mammalian signal recognition particle (SRP) and the product of a gene of unknown function in Escherichia coli, ffh (Römisch, K., J. Webb, J. Herz, S. Prehn, R. Frank, M. Vingron, and B. Dobberstein. 1989. Nature (Lond.). 340:478-482; Bernstein H. D., M. A. Poritz, K. Strub, P. J. Hoben, S. Brenner, P. Walter. 1989. Nature (Lond.). 340:482-486). To accomplish this we took advantage of short stretches of conserved sequence between ffh and SRP54mam and used the polymerase chain reaction (PCR) to amplify fragments of the homologous yeast genes. The DNA sequences predict proteins for SRP54sc and SRP54sp that are 47% and 52% identical to SRP54mam, respectively. Like SRP54mam and ffh, both predicted yeast proteins contain a GTP binding consensus sequence in their NH2-terminal half (G-domain), and methionine-rich sequences in their COOH-terminal half (M-domain). In contrast to SRP54mam and ffh the yeast proteins contain additional Met-rich sequences inserted at the COOH-terminal portion of the M-domain. SRP54sp contains a 480-nucleotide intron located 78 nucleotides from the 5' end of the open reading frame. Although the function of the yeast homologues is unknown, gene disruption experiments in S. cerevisiae show that the gene is essential for growth. The identification of SRP54sc and SRP54sp provides the first evidence for SRP related proteins in yeast
Comment to 'The Dependence of the anomalous J / psi suppression on the number of participant nucleons'
The recently published experimental dependence of the J/psi suppression pattern in Pb+Pb collisions at the CERN SPS on the energy of zero degree calorimeter EZDC are analyzed. It is found that the data obtained within the minimum bias analysis (using theoretical Drell-Yan ) are at variance with the previously published experimental dependence of the same quantity on the transversal energy of neutral hadrons ET . The discrepancy is related to the moderate centrality region: 100 << Np << 200 (Np is the number of nucleon participants). This could result from systematic experimental errors in the minimum bias sample. A possible source of the errors may be contamination of the minimum bias sample by o -target interactions. The data obtained within the standard analysis (using measured Drell-Yan multiplicity) are found to be much less sensitive to the contamination
Existence of negative differential thermal conductance in one-dimensional diffusive thermal transport
We show that in a finite one-dimensional (1D) system with diffusive thermal
transport described by the Fourier's law, negative differential thermal
conductance (NDTC) cannot occur when the temperature at one end is fixed. We
demonstrate that NDTC in this case requires the presence of junction(s) with
temperature dependent thermal contact resistance (TCR). We derive a necessary
and sufficient condition for the existence of NDTC in terms of the properties
of the TCR for systems with a single junction. We show that under certain
circumstances we even could have infinite (negative or positive) differential
thermal conductance in the presence of the TCR. Our predictions provide
theoretical basis for constructing NDTC-based devices, such as thermal
amplifiers, oscillators and logic devices
The 2-generalized knot group determines the knot
Generalized knot groups were introduced independently by Kelly
(1991) and Wada (1992). We prove that determines the unoriented knot
type and sketch a proof of the same for for .Comment: 4 page
Superheavy elements and an upper limit to the electric field strength
An upper limit to the electric field strength, such as that of the nonlinear electrodynamics of Born and Infeld, leads to dramatic differences in the energy eigenvalues and wave functions of atomic electrons bound to superheavy nuclei. For example, the 1s1/2 energy level joins the lower continuum at Z=215 instead of Z=174, the value obtained when Maxwell's equations are used to determine the electric field
- …
