197 research outputs found

    Monitoring induced gene expression of single cells in a multilayer microchip

    Get PDF
    We present a microfluidic system that facilitates long-term measurements of single cell response to external stimuli. The difficulty of addressing cells individually was overcome by using a two-layer microfluidic device. The top layer is designed for trapping and culturing of cells while the bottom layer is employed for supplying chemical compounds that can be transported towards the cells in defined concentrations and temporal sequences. A porous polyester membrane that supports transport and diffusion of compounds from below separates the microchannels of both layers. The performance and potential of the device are demonstrated using human embryonic kidney cells (HEK293) transfected with an inducible gene expression system. Expression of a fluorescent protein (ZsGreen1-DR) is observed while varying the concentration and exposure time of the inducer tetracycline. The study reveals the heterogeneous response of the cells as well as average responses of tens of cells that are analyzed in parallel. The microfluidic platform enables systematic studies under defined conditions and is a valuable tool for general single cell studies to obtain insights into mechanisms and kinetics that are not accessible by conventional macroscopic methods. Figure A two-layer microfluidic device is presented that facilitates measurements of single cell response to external stimul

    Species Abundance Patterns in Complex Evolutionary Dynamics

    Full text link
    An analytic theory of species abundance patterns (SAPs) in biological networks is presented. The theory is based on multispecies replicator dynamics equivalent to the Lotka-Volterra equation, with diverse interspecies interactions. Various SAPs observed in nature are derived from a single parameter. The abundance distribution is formed like a widely observed left-skewed lognormal distribution. As the model has a general form, the result can be applied to similar patterns in other complex biological networks, e.g. gene expression.Comment: 4 pages, 3 figures. Physical Review Letters, in pres

    Modeling the influence of Twitter in reducing and increasing the spread of influenza epidemics

    Get PDF
    In this paper we present compartmentalized neuron arraying (CNA) microfluidic circuits for the preparation of neuronal networks using minimal cellular inputs (10–100-fold less than existing systems). The approach combines the benefits of microfluidics for precision single cell handling with biomaterial patterning for the long term maintenance of neuronal arrangements. A differential flow principle was used for cell metering and loading along linear arrays. An innovative water masking technique was developed for the inclusion of aligned biomaterial patterns within the microfluidic environment. For patterning primary neurons the technique involved the use of meniscus-pinning micropillars to align a water mask for plasma stencilling a poly-amine coating. The approach was extended for patterning the human SH-SY5Y neuroblastoma cell line using a poly(ethylene glycol) (PEG) back-fill and for dopaminergic LUHMES neuronal precursors by the further addition of a fibronectin coating. The patterning efficiency Epatt was >75% during lengthy in chip culture, with ~85% of the outgrowth channels occupied by neurites. Neurons were also cultured in next generation circuits which enable neurite guidance into all outgrowth channels for the formation of extensive inter-compartment networks. Fluidic isolation protocols were developed for the rapid and sustained treatment of the different cellular and sub-cellular compartments. In summary, this research demonstrates widely applicable microfluidic methods for the construction of compartmentalized brain models with single cell precision. These minimalistic ex vivo tissue constructs pave the way for high throughput experimentation to gain deeper insights into pathological processes such as Alzheimer and Parkinson Diseases, as well as neuronal development and function in health

    Tropical Herbivorous Phasmids, but Not Litter Snails, Alter Decomposition Rates By Modifying Litter Bacteria

    Get PDF
    Consumers can alter decomposition rates through both feces and selective feeding in many ecosystems, but these combined effects have seldom been examined in tropical ecosystems. Members of the detrital food web (litter-feeders or microbivores) should presumably have greater effects on decomposition than herbivores, members of the green food web. Using litterbag experiments within a field enclosure experiment, we determined the relative effects of common litter snails (Megalomastoma croceum) and herbivorous walking sticks (Lamponius portoricensis) on litter composition, decomposition rates, and microbes in a Puerto Rican rainforest, and whether consumer effects were altered by canopy cover presence. Although canopy presence did not alter consumers’ effects, focal organisms had unexpected influences on decomposition. Decomposition was not altered by litter snails, but herbivorous walking sticks reduced leaf decomposition by about 50% through reductions in high quality litter abundance and, consequently, lower bacterial richness and abundance. This relatively unexplored but potentially important link between tropical herbivores, detritus, and litter microbes in this forest demonstrates the need to consider autotrophic influences when examining rainforest ecosystem processes

    Exploring the “Middle Earth” of network spectra via a Gaussian matrix function

    Get PDF
    We study a Gaussian matrix function of the adjacency matrix of artificial and real-world networks. We motivate the use of this function on the basis of a dynamical process modeled by the time-dependent Schrodinger equation with a squared Hamiltonian. In particular, we study the Gaussian Estrada index - an index characterizing the importance of eigenvalues close to zero. This index accounts for the information contained in the eigenvalues close to zero in the spectra of networks. Such method is a generalization of the so-called "Folded Spectrum Method" used in quantum molecular sciences. Here we obtain bounds for this index in simple graphs, proving that it reaches its maximum for star graphs followed by complete bipartite graphs. We also obtain formulas for the Estrada Gaussian index of Erdos-Renyi random graphs as well as for the Barabasi-Albert graphs. We also show that in real-world networks this index is related to the existence of important structural patters, such as complete bipartite subgraphs (bicliques). Such bicliques appear naturally in many real-world networks as a consequence of the evolutionary processes giving rise to them. In general, the Gaussian matrix function of the adjacency matrix of networks characterizes important structural information not described in previously used matrix functions of graphs

    Habitable Zones in the Universe

    Full text link
    Habitability varies dramatically with location and time in the universe. This was recognized centuries ago, but it was only in the last few decades that astronomers began to systematize the study of habitability. The introduction of the concept of the habitable zone was key to progress in this area. The habitable zone concept was first applied to the space around a star, now called the Circumstellar Habitable Zone. Recently, other, vastly broader, habitable zones have been proposed. We review the historical development of the concept of habitable zones and the present state of the research. We also suggest ways to make progress on each of the habitable zones and to unify them into a single concept encompassing the entire universe.Comment: 71 pages, 3 figures, 1 table; to be published in Origins of Life and Evolution of Biospheres; table slightly revise

    Percutaneous acetabuloplasty for metastatic acetabular lesions

    Get PDF
    Osteolytic metastases around the acetabulum are frequent in tumour patients, and may cause intense and drug-resistant pain of the hip. These lesions also cause structural weakening of the pelvis, limping, and poor quality of life. Percutaneous acetabuloplasty is a mini-invasive procedure for the management of metastatic lesions due to carcinoma of the acetabulum performed in patients who cannot tolerate major surgery, or in patients towards whom radiotherapy had already proved ineffective

    The energy–diversity relationship of complex bacterial communities in Arctic deep-sea sediments

    Get PDF
    The availability of nutrients and energy is a main driver of biodiversity for plant and animal communities in terrestrial and marine ecosystems, but we are only beginning to understand whether and how energy–diversity relationships may be extended to complex natural bacterial communities. Here, we analyzed the link between phytodetritus input, diversity and activity of bacterial communities of the Siberian continental margin (37–3427 m water depth). Community structure and functions, such as enzymatic activity, oxygen consumption and carbon remineralization rates, were highly related to each other, and with energy availability. Bacterial richness substantially increased with increasing sediment pigment content, suggesting a positive energy–diversity relationship in oligotrophic regions. Richness leveled off, forming a plateau, when mesotrophic sites were included, suggesting that bacterial communities and other benthic fauna may be structured by similar mechanisms. Dominant bacterial taxa showed strong positive or negative relationships with phytodetritus input and allowed us to identify candidate bioindicator taxa. Contrasting responses of individual taxa to changes in phytodetritus input also suggest varying ecological strategies among bacterial groups along the energy gradient. Our results imply that environmental changes affecting primary productivity and particle export from the surface ocean will not only affect bacterial community structure but also bacterial functions in Arctic deep-sea sediment, and that sediment bacterial communities can record shifts in the whole ocean ecosystem functioning

    Pollination and Predation Limit Fruit Set in a Shrub, Bourreria succulents (Boraginaceae), after Hurricanes on San Salvador Island, Bahamas 1

    Full text link
    Hurricanes have been assumed to reduce the reproduction of plants, either directly by leaf stripping and stress or indirectly by reducing pollinators. I examined the pollination and fruit set of a common shrub, Bourreria succulenta , after hurricanes on San Salvador island, Bahamas. Contrary to the assumption of resource limitation, B. succulenta showed unusually prolific flowering after Hurricane Lili stripped leaves from most of the plants in October 1996. I predicted that the abundant flowering would saturate pollinators and that fruit set would be pollination-limited. Fruit set was strongly pollination-limited by 71 percent. Butterflies are probably the major pollinators and were present at the site, but they rarely visited B. succulenta flowers even though flowers were brimming with nectar. Nectarivorous birds (Bananaquits and Bahama Wbodstars) visit B. succulenta flowers, but their populations were decimated by Hurricane Lili and they rarely visited flowers during this time. Fruit set was also severely predation-limited; a moth caterpillar (Gelechiidae) was extremely abundant and ate buds, flowers, and fruits, causing a further 68 percent reduction in fruit set. Together, pollination limitation and predation limitation reduced fruit set to only 7 percent or less. Predation was also intense in 1999 after Hurricane Floyd and resulted in 11 percent fruit set or less. Whether or not hurricanes were the cause of limited pollinators or abundant predators, the resulting low fruit set could have population effects because hurricanes can provide opportunities for the recruitment of new plants. These results emphasize that understanding plant–animal interactions may be necessary for predicting the effects of hurricanes on plant reproductive success, which may affect subsequent recruitment. Species on small islands like San Salvador (150 km 2 ) with relatively few species may be especially vulnerable to environmental disturbances such as hurricanes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75721/1/j.1744-7429.2001.tb00184.x.pd

    Extent, intensity and drivers of mammal defaunation:a continental-scale analysis across the Neotropics

    Get PDF
    Neotropical mammal diversity is currently threatened by several chronic human-induced pressures. We compiled 1,029 contemporary mammal assemblages surveyed across the Neotropics to quantify the continental-scale extent and intensity of defaunation and understand their determinants based on environmental covariates. We calculated a local defaunation index for all assemblages—adjusted by a false-absence ratio—which was examined using structural equation models. We propose a hunting index based on socioenvironmental co-variables that either intensify or inhibit hunting, which we used as an additional predictor of defaunation. Mammal defaunation intensity across the Neotropics on average erased 56.5% of the local source fauna, with ungulates comprising the most ubiquitous losses. The extent of defaunation is widespread, but more incipient in hitherto relatively intact major biomes that are rapidly succumbing to encroaching deforestation frontiers. Assemblage-wide mammal body mass distribution was greatly reduced from a historical 95th-percentile of ~ 14 kg to only ~ 4 kg in modern assemblages. Defaunation and depletion of large-bodied species were primarily driven by hunting pressure and remaining habitat area. Our findings can inform guidelines to design transnational conservation policies to safeguard native vertebrates, and ensure that the “empty ecosystem” syndrome will be deterred from reaching much of the New World tropics
    corecore