15,403 research outputs found

    Application of the CINGEN program a thermal network data generator

    Get PDF
    The application of the CINGEN computer program and two of its supporting programs for the evaluation of structural and thermal performance of physical systems was described. The CINGEN program was written and implemented to avoid the duplication effort of performing a finite element approach for structural analysis and a finite differencing technique for thermal analysis, as well as the desire for a geometrical representation of the thermal model to reduce modeling errors. The program simplifies the thermal modeling process by performing all of the capacitance and conductance calculations normally done by the analyst. Each solid element is divided into five tetrahedrons, allowing the total volume to be calculated precisely. A sample problem was illustrated

    High-performance light-weight electrodes for hydrogen-oxygen fuel cells

    Get PDF
    High performance light weight electrodes for hydrogen oxygen fuel cell

    Participation costs for responders can reduce rejection rates in ultimatum bargaining

    Full text link
    This paper reports data from an ultimatum mini-game in which responders first had to choose whether or not to participate. Participation was costly, but the participation cost was smaller than the minimum payoff that a responder could guarantee himself in the ultimatum game. Compared to a standard treatment, we find that the rejection rate of unfavorable offers is significantly reduced when participation is costly. A possible explanation based on cognitive dissonance is offered

    Phase Separation in Charge-Stabilized Colloidal Suspensions: Influence of Nonlinear Screening

    Full text link
    The phase behavior of charge-stabilized colloidal suspensions is modeled by a combination of response theory for electrostatic interparticle interactions and variational theory for free energies. Integrating out degrees of freedom of the microions (counterions, salt ions), the macroion-microion mixture is mapped onto a one-component system governed by effective macroion interactions. Linear response of microions to the electrostatic potential of the macroions results in a screened-Coulomb (Yukawa) effective pair potential and a one-body volume energy, while nonlinear response modifies the effective interactions [A. R. Denton, \PR E {\bf 70}, 031404 (2004)]. The volume energy and effective pair potential are taken as input to a variational free energy, based on thermodynamic perturbation theory. For both linear and first-order nonlinear effective interactions, a coexistence analysis applied to aqueous suspensions of highly charged macroions and monovalent microions yields bulk separation of macroion-rich and macroion-poor phases below a critical salt concentration, in qualitative agreement with predictions of related linearized theories [R. van Roij, M. Dijkstra, and J.-P. Hansen, \PR E {\bf 59}, 2010 (1999); P. B. Warren, \JCP {\bf 112}, 4683 (2000)]. It is concluded that nonlinear screening can modify phase behavior but does not necessarily suppress bulk phase separation of deionized suspensions.Comment: 14 pages of text + 9 figure

    Nonlinear Screening and Effective Electrostatic Interactions in Charge-Stabilized Colloidal Suspensions

    Full text link
    A nonlinear response theory is developed and applied to electrostatic interactions between spherical macroions, screened by surrounding microions, in charge-stabilized colloidal suspensions. The theory describes leading-order nonlinear response of the microions (counterions, salt ions) to the electrostatic potential of the macroions and predicts microion-induced effective many-body interactions between macroions. A linear response approximation [Phys. Rev. E 62, 3855 (2000)] yields an effective pair potential of screened-Coulomb (Yukawa) form, as well as a one-body volume energy, which contributes to the free energy. Nonlinear response generates effective many-body interactions and essential corrections to both the effective pair potential and the volume energy. By adopting a random-phase approximation (RPA) for the response functions, and thus neglecting microion correlations, practical expressions are derived for the effective pair and triplet potentials and for the volume energy. Nonlinear screening is found to weaken repulsive pair interactions, induce attractive triplet interactions, and modify the volume energy. Numerical results for monovalent microions are in good agreement with available ab initio simulation data and demonstrate that nonlinear effects grow with increasing macroion charge and concentration and with decreasing salt concentration. In the dilute limit of zero macroion concentration, leading-order nonlinear corrections vanish. Finally, it is shown that nonlinear response theory, when combined with the RPA, is formally equivalent to the mean-field Poisson-Boltzmann theory and that the linear response approximation corresponds, within integral-equation theory, to a linearized hypernetted-chain closure.Comment: 30 pages, 8 figures, Phys. Rev. E (in press

    Novel metal-film configuration: Rh on Ag(100)

    Get PDF
    We present the results of an investigation of Rh films on Ag(100). The films are studied using Auger-electron spectroscopy, low-energy electron diffraction, x-ray photoelectron spectroscopy, ultraviolet photoemission spectroscopy, ion-scattering spectroscopy, and scanning Auger microscopy. Overlayer characteristics are examined at substrate temperatures of 300 and 600 K. We find that the equilibrium configuration is not predicted by any of the three traditional growth modes (Frank–Van der Merwe, Stranski-Krastanov, or Volmer-Weber). Rather, the equilibrium film structure is that of a Ag-Rh-Ag sandwich, most probably flat. Formation of the sandwich is thermodynamically driven by the difference in surface free energies between Ag and Rh, and is kinetically accessible because of the high mobility of the Ag atoms

    Aldosterone signaling through transient receptor potential melastatin 7 cation channel (TRPM7) and its α-kinase domain

    Get PDF
    We demonstrated a role for the Mg2 + transporter TRPM7, a bifunctional protein with channel and α-kinase domains, in aldosterone signaling. Molecular mechanisms underlying this are elusive. Here we investigated the function of TRPM7 and its α-kinase domain on Mg2 + and pro-inflammatory signaling by aldosterone. Kidney cells (HEK-293) expressing wild-type human TRPM7 (WThTRPM7) or constructs in which the α-kinase domain was deleted (ΔKinase) or rendered inactive with a point mutation in the ATP binding site of the α-kinase domain (K1648R) were studied. Aldosterone rapidly increased [Mg2 +]i and stimulated NADPH oxidase-derived generation of reactive oxygen species (ROS) in WT hTRPM7 and TRPM7 kinase dead mutant cells. Translocation of annexin-1 and calpain-II and spectrin cleavage (calpain target) were increased by aldosterone in WT hTRPM7 cells but not in α-kinase-deficient cells. Aldosterone stimulated phosphorylation of MAP kinases and increased expression of pro-inflammatory mediators ICAM-1, Cox-2 and PAI-1 in Δkinase and K1648R cells, effects that were inhibited by eplerenone (mineralocorticoid receptor (MR) blocker). 2-APB, a TRPM7 channel inhibitor, abrogated aldosterone-induced Mg2 + responses in WT hTRPM7 and mutant cells. In 2-APB-treated ΔKinase and K1648R cells, aldosterone-stimulated inflammatory responses were unchanged. These data indicate that aldosterone stimulates Mg2 + influx and ROS production in a TRPM7-sensitive, kinase-insensitive manner, whereas activation of annexin-1 requires the TRPM7 kinase domain. Moreover TRPM7 α-kinase modulates inflammatory signaling by aldosterone in a TRPM7 channel/Mg2 +-independent manner. Our findings identify novel mechanisms for non-genomic actions of aldosterone involving differential signaling through MR-activated TRPM7 channel and α-kinase

    Stripe-hexagon competition in forced pattern forming systems with broken up-down symmetry

    Full text link
    We investigate the response of two-dimensional pattern forming systems with a broken up-down symmetry, such as chemical reactions, to spatially resonant forcing and propose related experiments. The nonlinear behavior immediately above threshold is analyzed in terms of amplitude equations suggested for a 1:21:2 and 1:11:1 ratio between the wavelength of the spatial periodic forcing and the wavelength of the pattern of the respective system. Both sets of coupled amplitude equations are derived by a perturbative method from the Lengyel-Epstein model describing a chemical reaction showing Turing patterns, which gives us the opportunity to relate the generic response scenarios to a specific pattern forming system. The nonlinear competition between stripe patterns and distorted hexagons is explored and their range of existence, stability and coexistence is determined. Whereas without modulations hexagonal patterns are always preferred near onset of pattern formation, single mode solutions (stripes) are favored close to threshold for modulation amplitudes beyond some critical value. Hence distorted hexagons only occur in a finite range of the control parameter and their interval of existence shrinks to zero with increasing values of the modulation amplitude. Furthermore depending on the modulation amplitude the transition between stripes and distorted hexagons is either sub- or supercritical.Comment: 10 pages, 12 figures, submitted to Physical Review

    Identification of reconstruction in Pt films deposited on Pd(110) at room temperature

    Get PDF
    We have studied the properties of Pt films on Pd(110), grown by deposition at 300 K and annealed up to 900 K, using low-energy electron diffraction and Auger-electron spectroscopy. We observe (1×2) and (1×3) superstructures, depending upon Pt coverage and annealing temperature. At one monolayer, the (1×1) periodicity is unperturbed. Between one and three monolayers, a broad and streaky (1×2) develops upon annealing, then fades to (1×1) as the film dissolves. At three monolayers and above, the broad and streaky (1×2) splits to a (1×3), then fades again to (1×1) at high temperature. Adsorption of CO causes (1×3)→(1×1) reversion at relatively low temperature, 430 K. Based upon the known behavior of Pt(110) reconstructions, this is strong evidence that the (1×3) structure of the Pt film is a surface reconstruction
    corecore