120 research outputs found

    Repetitive element hypomethylation in blood leukocyte DNA and cancer incidence, prevalence, and mortality in elderly individuals : the Normative Aging Study

    Get PDF
    BACKGROUND: Global genomic hypomethylation is a common epigenetic event in cancer that mostly results from hypomethylation of repetitive DNA elements. Case-control studies have associated blood leukocyte DNA hypomethylation with several cancers. Because samples in case-control studies are collected after disease development, whether DNA hypomethylation is causal or just associated with cancer development is still unclear. METHODS: In 722 elderly subjects from the Normative Aging Study cohort, we examined whether DNA methylation in repetitive elements (Alu, LINE-1) was associated with cancer incidence (30 new cases, median follow-up: 89 months), prevalence (205 baseline cases), and mortality (28 deaths, median follow-up: 85 months). DNA methylation was measured by bisulfite pyrosequencing. RESULTS: Individuals with low LINE-1 methylation (<median) had a 3.0-fold (95%CI 1.3-6.9) increased incidence of all cancers combined. LINE-1 and Alu methylation were not significantly associated with cancer prevalence at baseline (all cancers combined). However, individuals with low LINE-1 methylation (<median) had a 3.2-fold (95% CI 1.4-7.5) higher prevalence of lung cancer. Individuals with low LINE-1 or Alu methylation (<median) had increased cancer mortality (HR = 3.2, 95%CI 1.3-7.9 for LINE-1; HR = 2.5, 95%CI 1.1-5.8 for Alu). CONCLUSION: These findings suggest that individuals with lower repetitive element methylation are at high risk of developing and dying from cancer

    Allergen sensitization is associated with increased dna methylation in older men

    Get PDF
    Background: Variation in epigenetic modifications, arising from either environmental exposures or internal physiological changes, can influence gene expression and may ultimately contribute to complex diseases such as asthma and allergies. We examined the association of asthma and allergic phenotypes with DNA methylation levels of retrotransposon-derived elements. Methods: We used data from 704 men (mean age 73 years) in the longitudinal Normative Aging Study to assess the relationship between asthma, allergic phenotypes and DNA methylation levels of the retrotransposon-derived elements Alu and long interspersed nuclear element (LINE)-1. Retrotransposons represent a large fraction of the genome (>30%) and are heavily methylated to prevent expression. Percent methylation of Alu and LINE-1 elements in peripheral white blood cells was quantified using PCR pyrosequencing. Data on sensitization to common allergens from skin prick testing, asthma and methacholine responsiveness were gathered approximately 8 years prior to DNA methylation analysis. Results: Prior allergen sensitization was associated with increased methylation of Alu (\u3b2 = 0.32 for sensitized vs. nonsensitized patients; p = 0.003) in models adjusted for pack-years of smoking, body mass index, current smoking, air pollutants, percentage of eosinophils, white blood cell count and age. Of the men interviewed, 5% of subjects reported a diagnosis of asthma. Neither Alu nor LINE-1 methylation was associated with asthma. Conclusions: These data suggest that increased DNA methylation of repetitive elements may be associated with allergen sensitization but does not appear to be associated with asthma. Future work is needed to identify potential underlying mechanisms for these relationships

    Mitochondria and aging in older individuals: An analysis of DNA methylation age metrics, leukocyte telomere length, and mitochondrial DNA copy number in the VA normative aging study

    Get PDF
    Population aging is a looming global health challenge. New biological aging metrics based on DNA methylation levels have been developed in addition to traditional aging biomarkers. The prospective relationships of aging biomarkers with mitochondrial changes are still not well understood. Here, we examined the prospective associations of mitochondrial copy number (mtDNAcn) with several aging biomarkers-DNAm-Age, DNAm-PhenoAge, DNAm-GrimAge, and leukocyte telomere length. We analyzed 812 individuals from Veteran Affairs Normative Aging Study (NAS) with available blood samples from 1999-2013. Whole blood mtDNAcn and relative leukocyte telomere length were measured via qPCR. DNA methylation was assessed and used to calculate DNAm-Age, DNAm-GrimAge, and DNAm-PhenoAge. Linear mixed models were used to quantify the associations of mtDNAcn with DNAm-Age, DNAm-GrimAge, DNAm-PhenoAge, and leukocyte telomere length. In multivariable cross-sectional analyses, mtDNAcn is negatively associated with DNAm-Age PhenoAge and DNAm-PhenoAge. In contrast, mtDNAcn is associated with prospective measures of higher DNAm-PhenoAge and shorter leukocyte telomere length. Our study shows that higher mtDNAcn is associated with prospective measures of greater DNAm-PhenoAge and shorter leukocyte telomere length independent of chronological age. This indicates a role for mitochondrial in aging-related disease and mortality, but not the departure of biological age from chronological age

    Prolonged Exposure to Particulate Pollution, Genes Associated with Glutathione Pathways, and DNA Methylation in a Cohort of Older Men

    Get PDF
    Background: DNA methylation is a potential pathway linking environmental exposures to disease. Exposure to particulate air pollution has been associated with increased cardiovascular morbidity and mortality, and lower blood DNA methylation has been found in processes related to cardiovascular morbidity

    Traffic-Related Air Pollution and QT Interval: Modification by Diabetes, Obesity, and Oxidative Stress Gene Polymorphisms in the Normative Aging Study

    Get PDF
    BACKGROUND. Acute exposure to ambient air pollution has been associated with acute changes in cardiac outcomes, often within hours of exposure. OBJECTIVES. We examined the effects of air pollutants on heart-rate-corrected QT interval (QTc), an electrocardiographic marker of ventricular repolarization, and whether these associations were modified by participant characteristics and genetic polymorphisms related to oxidative stress. METHODS. We studied repeated measurements of QTc on 580 men from the Veterans Affairs Normative Aging Study (NAS) using mixed-effects models with random intercepts. We fitted a quadratic constrained distributed lag model to estimate the cumulative effect on QTc of ambient air pollutants including fine particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5), ozone (O3), black carbon (BC), nitrogen dioxide (NO2), carbon monoxide (CO), and sulfur dioxide (SO2) concentrations during the 10 hr before the visit. We genotyped polymorphisms related to oxidative stress and analyzed pollution-susceptibility score interactions using the genetic susceptibility score (GSS) method. RESULTS. Ambient traffic pollutant concentrations were related to longer QTc. An interquartile range (IQR) change in BC cumulative during the 10 hr before the visit was associated with increased QTc [1.89 msec change; 95% confidence interval (CI), -0.16 to 3.93]. We found a similar association with QTc for an IQR change in 1-hr BC that occurred 4 hr before the visit (2.54 msec change; 95% CI, 0.28-4.80). We found increased QTc for IQR changes in NO2 and CO, but the change was statistically insignificant. In contrast, we found no association between QTc and PM2.5, SO2, and O3. The association between QTc and BC was stronger among participants who were obese, who had diabetes, who were nonsmokers, or who had higher GSSs. CONCLUSIONS. Traffic-related pollutants may increase QTc among persons with diabetes, persons who are obese, and nonsmoking elderly individuals; the number of genetic variants related to oxidative stress increases this effect.National Institute of Environmental Health Sciences (ES014663-01A2, P01 ES09825); United States Environmental Protection Agency (R827353, R83241601

    Arsenic exposure and DNA methylation among elderly men

    Get PDF
    BACKGROUND: Arsenic exposure has been linked to epigenetic modifications such as DNA methylation in in-vitro and animal studies. This association has also been explored in highly exposed human populations, but studies among populations environmentally exposed to low arsenic levels are lacking. METHODS: We evaluated the association between exposure to arsenic, measured in toenails, and blood DNA methylation in Alu and Long Interspersed Nucleotide Element-1 (LINE-1) repetitive elements in elderly men environmentally exposed to low levels of arsenic. We also explored potential effect modification by plasma folate, cobalamin (vitamin B12), and pyridoxine (vitamin B6). The study population was 581 participants from the Normative Aging Study in Boston, of whom 434, 140, and 7 had 1, 2, and 3 visits, respectively, between 1999-2002 and 2006-2007. We used mixed-effects models and included interaction terms to assess potential effect modification by nutritional factors. RESULTS: There was a trend of increasing Alu and decreasing LINE-1 DNA methylation as arsenic exposure increased. In subjects with plasma folate below the median (<14.1 ng/mL), arsenic was positively associated with Alu DNA methylation (\u3b2 = 0.08 [95% confidence interval = 0.03 to 0.13] for one interquartile range [0.06 \u3bcg/g] increase in arsenic), whereas a negative association was observed in subjects with plasma folate above the median (\u3b2 = -0.08 [-0.17 to 0.01]). CONCLUSIONS: We found an association between arsenic exposure and DNA methylation in Alu repetitive elements that varied by folate level. This suggests a potential role for nutritional factors in arsenic toxicity

    Empirical comparison of reduced representation bisulfite sequencing and Infinium BeadChip reproducibility and coverage of DNA methylation in humans

    Get PDF
    We empirically examined the strengths and weaknesses of two human genome-wide DNA methylation platforms: rapid multiplexed reduced representation bisulfite sequencing and Illumina’s Infinium BeadChip. Rapid multiplexed reduced representation bisulfite sequencing required less input DNA, offered more flexibility in coverage, and interrogated more CpG loci at a higher regional density. The Infinium covered slightly more protein coding, cancer-associated and mitochondrial-related genes, both platforms covered all known imprinting clusters, and rapid multiplexed reduced representation bisulfite sequencing covered more microRNA genes than the HumanMethylation450, but fewer than the MethylationEPIC. Rapid multiplexed reduced representation bisulfite sequencing did not always interrogate exactly the same CpG loci, but genomic tiling improved overlap between different libraries. Reproducibility of rapid multiplexed reduced representation bisulfite sequencing and concordance between the platforms increased with CpG density. Only rapid multiplexed reduced representation bisulfite sequencing could genotype samples and measure allele-specific methylation, and we confirmed that Infinium measurements are influenced by nearby single-nucleotide polymorphisms. The respective strengths and weaknesses of these two genome-wide DNA methylation platforms need to be considered when conducting human epigenetic studies

    DunedinPACE, a DNA methylation biomarker of the pace of aging

    Get PDF
    This is the final version. Available on open access from eLife Sciences Publications via the DOI in this recordData availability: Datasets are available from the data owners. Data from the Dunedin and E-Risk Study can be accessed through agreement with the Study investigators. Instructions are available at https://sites.google.com/site/moffittcaspiprojects/. The data access application form can be downloaded here: https://sites.google.com/site/moffittcaspiprojects/forms-for-new-projects/concept-paper-template. Data from the Understanding Society Study is available through METADAC at https://www.metadac.ac.uk/ukhls/. All details are on the Metadac website (https://www.metadac.ac.uk/data-access-through-metadac/). The data access application form can be found here https://www.metadac.ac.uk/files/2019/02/v2.41-UKHLS-METADAC-application-form-2019-2hak8bv.docx. Data from the Normative Aging Study were obtained from the Study investigators. Data are accessible through dbGaP, accession phs000853.v1.p1. Data from the Framingham Heart Study were obtained from dbGaP, accession phs000007.v32.p13. GSE55763 is a publicly available dataset available from the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55763).Background: Measures to quantify changes in the pace of biological aging in response to intervention are needed to evaluate geroprotective interventions for humans. Previously, we showed that quantification of the pace of biological aging from a DNA-methylation blood test was possible (Belsky et al., 2020). Here, we report a next-generation DNA-methylation biomarker of Pace of Aging, DunedinPACE (for Pace of Aging Calculated from the Epigenome). Methods: We used data from the Dunedin Study 1972-1973 birth cohort tracking within-individual decline in 19 indicators of organ-system integrity across four time points spanning two decades to model Pace of Aging. We distilled this two-decade Pace of Aging into a single-time-point DNA-methylation blood-test using elastic-net regression and a DNA-methylation dataset restricted to exclude probes with low test-retest reliability. We evaluated the resulting measure, named DunedinPACE, in five additional datasets. Results: DunedinPACE showed high test-retest reliability, was associated with morbidity, disability, and mortality, and indicated faster aging in young adults with childhood adversity. DunedinPACE effect-sizes were similar to GrimAge Clock effect-sizes. In analysis of incident morbidity, disability, and mortality, DunedinPACE and added incremental prediction beyond GrimAge. Conclusions: DunedinPACE is a novel blood biomarker of the pace of aging for gerontology and geroscience. Funding: This research was supported by US-National Institute on Aging grants AG032282, AG061378, AG066887, and UK Medical Research Council grant MR/P005918/1.US National Institute on AgingMedical Research Council (MRC

    Blood DNA methylation sites predict death risk in a longitudinal study of 12,300 individuals

    Get PDF
    This is the final version. Available on open access from Impact Journals via the DOI in this recordDNA methylation has fundamental roles in gene programming and aging that may help predict mortality. However, no large-scale study has investigated whether site-specific DNA methylation predicts all-cause mortality. We used the Illumina-HumanMethylation450-BeadChip to identify blood DNA methylation sites associated with all-cause mortality for 12, 300 participants in 12 Cohorts of the Heart and Aging Research in Genetic Epidemiology (CHARGE) Consortium. Over an average 10-year follow-up, there were 2,561 deaths across the cohorts. Nine sites mapping to three intergenic and six gene-specific regions were associated with mortality (P < 9.3x10-7) independently of age and other mortality predictors. Six sites (cg14866069, cg23666362, cg20045320, cg07839457, cg07677157, cg09615688)-mapping respectively to BMPR1B, MIR1973, IFITM3, NLRC5, and two intergenic regions-were associated with reduced mortality risk. The remaining three sites (cg17086398, cg12619262, cg18424841)-mapping respectively to SERINC2, CHST12, and an intergenic region-were associated with increased mortality risk. DNA methylation at each site predicted 5%-15% of all deaths. We also assessed the causal association of those sites to age-related chronic diseases by using Mendelian randomization, identifying weak causal relationship between cg18424841 and cg09615688 with coronary heart disease. Of the nine sites, three (cg20045320, cg07839457, cg07677157) were associated with lower incidence of heart disease risk and two (cg20045320, cg07839457) with smoking and inflammation in prior CHARGE analyses. Methylation of cg20045320, cg07839457, and cg17086398 was associated with decreased expression of nearby genes (IFITM3, IRF, NLRC5, MT1, MT2, MARCKSL1) linked to immune responses and cardiometabolic diseases. These sites may serve as useful clinical tools for mortality risk assessment and preventative care

    Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: A multi-cohort analysis

    Get PDF
    Differences in health status by socioeconomic position (SEP) tend to be more evident at older ages, suggesting the involvement of a biological mechanism responsive to the accumulation of deleterious exposures across the lifespan. DNA methylation (DNAm) has been proposed as a biomarker of biological aging that conserves memory of endogenous and exogenous stress during life. We examined the association of education level, as an indicator of SEP, and lifestyle-related variables with four biomarkers of age-dependent DNAm dysregulation: the total number of stochastic epigenetic mutations (SEMs) and three epigenetic clocks (Horvath, Hannum and Levine), in 18 cohorts spanning 12 countries. The four biological aging biomarkers were associated with education and different sets of risk factors independently, and the magnitude of the effects differed depending on the biomarker and the predictor. On average, the effect of low education on epigenetic aging was comparable with those of other lifestyle-related risk factors (obesity, alcohol intake), with the exception of smoking, which had a significantly stronger effect. Our study shows that low education is an independent predictor of accelerated biological (epigenetic) aging and that epigenetic clocks appear to be good candidates for disentangling the biological pathways underlying social inequalities in healthy aging and longevity
    • …
    corecore