90 research outputs found

    Historical and contemporary factors generate unique butterfly communities on islands

    Get PDF
    The mechanisms shaping island biotas are not yet well understood mostly because of a lack of studies comparing eco-evolutionary fingerprints over entire taxonomic groups. Here, we linked community structure (richness, frequency and nestedness) and genetic differentiation (based on mitochondrial DNA) in order to compare insular butterfly communities occurring over a key intercontinental area in the Mediterranean (Italy-Sicily-Maghreb). We found that community characteristics and genetic structure were influenced by a combination of contemporary and historical factors, and among the latter, connection during the Pleistocene had an important impact. We showed that species can be divided into two groups with radically different properties: widespread taxa had high dispersal capacity, a nested pattern of occurrence, and displayed little genetic structure, while rare species were mainly characterized by low dispersal, high turnover and genetically differentiated populations. These results offer an unprecedented view of the distinctive butterfly communities and of the main processes determining them on each studied island and highlight the importance of assessing the phylogeographic value of populations for conservation

    Properties of small molecular drug loading and diffusion in a fluorinated PEG hydrogel studied by ^1H molecular diffusion NMR and ^(19)F spin diffusion NMR

    Get PDF
    R_f-PEG (fluoroalkyl double-ended poly(ethylene glycol)) hydrogel is potentially useful as a drug delivery depot due to its advanced properties of sol–gel two-phase coexistence and low surface erosion. In this study, ^1H molecular diffusion nuclear magnetic resonance (NMR) and ^(19)F spin diffusion NMR were used to probe the drug loading and diffusion properties of the R_f-PEG hydrogel for small anticancer drugs, 5-fluorouracil (FU) and its hydrophobic analog, 1,3-dimethyl-5-fluorouracil (DMFU). It was found that FU has a larger apparent diffusion coefficient than that of DMFU, and the diffusion of the latter was more hindered. The result of ^(19)F spin diffusion NMR for the corresponding freeze-dried samples indicates that a larger portion of DMFU resided in the R_f core/IPDU intermediate-layer region (where IPDU refers to isophorone diurethane, as a linker to interconnect the R_f group and the PEG chain) than that of FU while the opposite is true in the PEG–water phase. To understand the experimental data, a diffusion model was proposed to include: (1) hindered diffusion of the drug molecules in the R_f core/IPDU-intermediate-layer region; (2) relatively free diffusion of the drug molecules in the PEG-water phase (or region); and (3) diffusive exchange of the probe molecules between the above two regions. This study also shows that molecular diffusion NMR combined with spin diffusion NMR is useful in studying the drug loading and diffusion properties in hydrogels for the purpose of drug delivery applications

    Effect of Torrefaction on Water Vapor Adsorption Properties and Resistance to Microbial Degradation of Corn Stover

    Get PDF
    The equilibrium moisture content (EMC) of biomass affects transportation, storage, downstream feedstock processing, and the overall economy of biorenewables production. Torrefaction is a thermochemical process conducted in the temperature regime between 200 and 300 °C under an inert atmosphere that, among other benefits, aims to reduce the innate hydrophilicity and susceptibility to microbial degradation of biomass. The objective of this study was to examine water sorption properties of torrefied corn stover. The EMC of raw corn stover, along with corn stover thermally pretreated at three temperatures, was measured using the static gravimetric method at equilibrium relative humidity (ERH) and temperatures ranging from 10 to 98% and from 10 to 40 °C, respectively. Five isotherms were fitted to the experimental data to obtain the prediction equation that best describes the relationship between the ERH and the EMC of lignocellulosic biomass. Microbial degradation of the samples was tested at 97% ERH and 30 °C. Fiber analyses were conducted on all samples. In general, torrefied biomass showed an EMC lower than that of raw biomass, which implied an increase in hydrophobicity. The modified Oswin model performed best in describing the correlation between ERH and EMC. Corn stover torrefied at 250 and 300 °C had negligible dry matter mass loss due to microbial degradation. Fiber analysis showed a significant decrease in hemicellulose content with the increase in pretreatment temperature, which might be the reason for the hydrophobic nature of the torrefied biomass. The outcomes of this work can be used for torrefaction process optimization, and decision-making regarding raw and torrefied biomass storage and downstream processing

    Rise and fall of island butterfly diversity : understanding genetic differentiation and extinction in a highly diverse archipelago

    Get PDF
    Aim. We describe fine-scale diversity patterns of the entire butterfly fauna occurring on the Tuscan Archipelago. By assessing the traits associated with population diversification, haplotype uniqueness and extinction, we aim to identify the factors determining the origin and maintenance of genetic diversity, and population vulnerability to environmental changes. Location. Tuscan Archipelago, Sardinia, Tuscany (Italy) and Corsica (France). Methods. We built a mtDNA dataset (1,303 COI sequences) for the 52 butterfly species reported in the Archipelago, also including specimens from neighbouring areas, and compiled data on 12 species traits and on the apparent extinction of species from the main islands. We calculated indices that measure genetic differentiation, and using phylogenetic regressions we evaluated the relationships between these indices and species traits. Finally, we inferred which traits are associated with disappearance of species on individual islands using phylogenetic regression. Results. The overall spatial pattern of genetic diversity corresponded with the proximity of the areas, but strong contrasts were also identified between geographically close areas. Together with the island endemics, several common and widespread species had a high genetic diversification among islands and mainland. Phylogenetic regressions revealed that smaller-sized, more specialized species, with a preference for drier regions, displayed greater genetic structure and/or haplotype uniqueness. Species that disappeared from islands had a higher population diversification. Capraia has experienced a notable loss of diversity, which significantly affected species with shorter flight periods. Main conclusions. Tuscan island butterflies are characterized by strong genetic contrasts and species differ in their contribution to the overall genetic diversity. By ranking the species for their contribution to genetic diversity and identifying the traits linked to the emergence and maintenance of diversity, we have developed a valuable tool for prioritizing populations as targets for monitoring and conservation action. The dataset constructed also represents a valuable resource for testing biogeographical hypotheses

    Pan-cancer whole-genome analyses of metastatic solid tumours

    Get PDF
    Contains fulltext : 215492.pdf (publisher's version ) (Open Access)Metastatic cancer is a major cause of death and is associated with poor treatment efficacy. A better understanding of the characteristics of late-stage cancer is required to help adapt personalized treatments, reduce overtreatment and improve outcomes. Here we describe the largest, to our knowledge, pan-cancer study of metastatic solid tumour genomes, including whole-genome sequencing data for 2,520 pairs of tumour and normal tissue, analysed at median depths of 106x and 38x, respectively, and surveying more than 70 million somatic variants. The characteristic mutations of metastatic lesions varied widely, with mutations that reflect those of the primary tumour types, and with high rates of whole-genome duplication events (56%). Individual metastatic lesions were relatively homogeneous, with the vast majority (96%) of driver mutations being clonal and up to 80% of tumour-suppressor genes being inactivated bi-allelically by different mutational mechanisms. Although metastatic tumour genomes showed similar mutational landscape and driver genes to primary tumours, we find characteristics that could contribute to responsiveness to therapy or resistance in individual patients. We implement an approach for the review of clinically relevant associations and their potential for actionability. For 62% of patients, we identify genetic variants that may be used to stratify patients towards therapies that either have been approved or are in clinical trials. This demonstrates the importance of comprehensive genomic tumour profiling for precision medicine in cancer

    A blood atlas of COVID-19 defines hallmarks of disease severity and specificity.

    Get PDF
    Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete description of specific immune biomarkers. We present here a comprehensive multi-omic blood atlas for patients with varying COVID-19 severity in an integrated comparison with influenza and sepsis patients versus healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity involved cells, their inflammatory mediators and networks, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism, and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Systems-based integrative analyses including tensor and matrix decomposition of all modalities revealed feature groupings linked with severity and specificity compared to influenza and sepsis. Our approach and blood atlas will support future drug development, clinical trial design, and personalized medicine approaches for COVID-19
    • …
    corecore