341 research outputs found

    Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles

    Get PDF
    Extracellular vesicles (EVs) are membrane vesicles released by both eukaryotic and prokaryotic cells; they not only serve physiological functions, such as disposal of cellular components, but also play pathophysiologic roles in inflammatory and degenerative diseases. Common molecular mechanisms for EV biogenesis are evident in different cell biological contexts across eukaryotic phyla, and inhibition of this biogenesis may provide an avenue for therapeutic research. The involvement of sphingolipids (SLs) and their enzymes on EV biogenesis and release has not received much attention in current research. Here, we review how SLs participate in EV biogenesis by shaping membrane curvature and how they contribute to EV action in target cells. First, we describe how acid and neutral SMases, by generating the constitutive SL, ceramide, facilitate biogenesis of EVs at the plasma membrane and inside the endocytic compartment. We then discuss the involvement of other SLs, such as sphingosine-1-phosphate and galactosyl-sphingosine, in EV formation and cargo sorting. Last, we look ahead at some biological effects of EVs mediated by changes in SL levels in recipient cells

    Tissue carcinoembryonic antigen and oestrogen receptor status in breast carcinoma: an immunohistochemical study of clinical outcome in a series of 252 patients with long-term follow-up.

    Get PDF
    Carcinoembryonic antigen (CEA) is a well-known tumour marker whose immunohistochemical expression could be prognostically relevant in breast carcinomas. We evaluated CEA immunohistochemical expression, using the specific T84.66 monoclonal antibody, in a series of 252 consecutive cases of infiltrating breast carcinomas (104 N0, 148 N1/2) with median follow-up of 84 months. Oestrogen receptor (ER) status has been evaluated with the immunohistochemical method (ER1D5 antibody, 10% cut-off value): 121 cases were ER negative, 128 cases were ER positive and in three cases ER status was unknown. CEA staining was cytoplasmic; staining intensity and percentage of reacting cells were combined to obtain a final score (CEA score). The difference between the distribution of CEA score within the modalities of the other variables was not statistically significant. Univariate survival analysis has been performed on the series of node-negative and node-positive patients. In the latter subgroup, this has been performed separately for patients treated with systemic adjuvant hormonal therapy or chemotherapy. A multivariate analysis was only performed for node-positive patients treated with adjuvant therapy. CEA immunoreactivity was not prognostically relevant in any subset of analysed patients. The most important prognostic markers were nodal status and tumour size

    Data and performances evaluation of the SPIDIA-DNA Pan-European External Quality Assessment: 2nd SPIDIA-DNA laboratory report.

    Get PDF
    AbstractWithin the EU-SPIDIA project (www.spidia.eu), the quality parameters of blood genomic DNA were defined [SPIDIA-DNA: an External Quality Assessment for the pre-analytical phase of blood samples used for DNA-based analyses – [1]; Influence of pre-analytical procedures on genomic DNA integrity in blood samples: the SPIDIA experience – [2]; Combining qualitative and quantitative imaging evaluation for the assessment of genomic DNA integrity: the SPIDIA experience – [3]. DNA quality parameters were used to evaluate the laboratory performance within an External Quality Assessment (EQA) [Second SPIDIA-DNA External Quality Assessment (EQA): Influence of pre-analytical phase of blood samples on genomic DNA quality – [4]. These parameters included DNA purity and yield by UV spectrophotometric measurements, the presence of PCR interferences by Kineret software and genomic DNA integrity analysis by Pulsed Field Gel Electrophoresis.Here we present the specific laboratory report of the 2nd SPIDIA-DNA EQA as an example of data and performances evaluation

    How to reprogram microglia toward beneficial functions

    Get PDF
    Microglia, brain cells of nonneural origin, orchestrate the inflammatory response to diverse insults, including hypoxia/ischemia or maternal/fetal infection in the perinatal brain. Experimental studies have demonstrated the capacity of microglia to recognize pathogens or damaged cells activating a cytotoxic response that can exacerbate brain damage. However, microglia display an enormous plasticity in their responses to injury and may also promote resolution stages of inflammation and tissue regeneration. Despite the critical role of microglia in brain pathologies, the cellular mechanisms that govern the diverse phenotypes of microglia are just beginning to be defined. Here we review emerging strategies to drive microglia toward beneficial functions, selectively reporting the studies which provide insights into molecular mechanisms underlying the phenotypic switch. A variety of approaches have been proposed which rely on microglia treatment with pharmacological agents, cytokines, lipid messengers, or microRNAs, as well on nutritional approaches or therapies with immunomodulatory cells. Analysis of the molecular mechanisms relevant for microglia reprogramming toward pro-regenerative functions points to a central role of energy metabolism in shaping microglial functions. Manipulation of metabolic pathways may thus provide new therapeutic opportunities to prevent the deleterious effects of inflammatory microglia and to control excessive inflammation in brain disorders

    Multiparametric analysis of cell-free DNA in melanoma patients.

    Get PDF
    Cell-free DNA in blood (cfDNA) represents a promising biomarker for cancer diagnosis. Total cfDNA concentration showed a scarce discriminatory power between patients and controls. A higher specificity in cancer diagnosis can be achieved by detecting tumor specific alterations in cfDNA, such as DNA integrity, genetic and epigenetic modifications.The aim of the present study was to identify a sequential multi-marker panel in cfDNA able to increase the predictive capability in the diagnosis of cutaneous melanoma in comparison with each single marker alone. To this purpose, we tested total cfDNA concentration, cfDNA integrity, BRAF(V600E) mutation and RASSF1A promoter methylation associated to cfDNA in a series of 76 melanoma patients and 63 healthy controls. The chosen biomarkers were assayed in cfDNA samples by qPCR. Comparison of biomarkers distribution in cases and controls was performed by a logistic regression model in both univariate and multivariate analysis. The predictive capability of each logistic model was investigated by means of the area under the ROC curve (AUC). To aid the reader to interpret the value of the AUC, values between 0.6 and 0.7, between 0.71 and 0.8 and greater than 0.8 were considered as indicating a weak predictive, satisfactory and good predictive capacity, respectively. The AUC value for each biomarker (univariate logistic model) was weak/satisfactory ranging between 0.64 (BRAF(V600E)) to 0.85 (total cfDNA). A good overall predictive capability for the final logistic model was found with an AUC of 0.95. The highest predictive capability was given by total cfDNA (AUC:0.86) followed by integrity index 180/67 (AUC:0.90) and methylated RASSF1A (AUC:0.89).An approach based on the simultaneous determination of three biomarkers (total cfDNA, integrity index 180/67 and methylated RASSF1A) could improve the diagnostic performance in melanoma

    Astrocytes-derived extracellular vesicles in motion at the neuron surface: Involvement of the prion protein

    Get PDF
    Astrocytes-derived extracellular vesicles (EVs) are key players in glia-neuron communication. However, whether EVs interact with neurons at preferential sites and how EVs reach these sites on neurons remains elusive. Using optical manipulation to study single EV-neuron dynamics, we here show that large EVs scan the neuron surface and use neuronal processes as highways to move extracellularly. Large EV motion on neurites is driven by the binding of EV to a surface receptor that slides on neuronal membrane, thanks to actin cytoskeleton rearrangements. The use of prion protein (PrP)-coated synthetic beads and PrP knock out EVs/neurons points at vesicular PrP and its receptor(s) on neurons in the control of EV motion. Surprisingly, a fraction of large EVs contains actin filaments and has an independent capacity to move in an actin-mediated way, through intermittent contacts with the plasma membrane. Our results unveil, for the first time, a dual mechanism exploited by astrocytic large EVs to passively/actively reach target sites on neurons moving on the neuron surface

    Novel interactions of transglutaminase-2 with heparan sulphate proteoglycans: reflection on physiological implications

    Get PDF
    This mini-review brings together information from publications and recent conference proceedings that have shed light on the biological interaction between transglutaminase-2 and heparan sulphate proteoglycans. We subsequently draw hypothesis of possible implications in the wound healing process. There is a substantial overlap in the action of transglutaminase-2 and the heparan sulphate proteoglycan syndecan-4 in normal and abnormal wound repair. Our latest findings have identified syndecan-4 as a possible binding and signalling partner of fibronectinbound TG2 and support the idea that transglutaminase-2 and syndecan-4 acts in synergy
    • …
    corecore