1,178 research outputs found
Context aware building energy management system with heterogeneous wireless network architecture
Energy wastage in buildings is to be minimized to reduce the carbon footprint of electricity. Wireless sensor and actor networks (WSAN) have been providing solutions for effective energy management within buildings. In this paper, we present a decisive server based context aware energy management system for smart buildings through Cyber Physical System (CPS) models. A layered architecture for building energy management is proposed to enhance scalability of the system. Heterogeneous wireless network based multiple radio gateway is proposed and implemented to make the system more adaptive to different applications catering to variable data rates. A smart room test bed is deployed in the IIT Hyderabad campus, where the decisive server collects various physical parameters through sensors, and based on the context generates wireless control messages to power electronics based actuators. Integrating context awareness into the system increases the efficiency in terms of energy savings and was observed to be significant, around 30%. The paper also presents a detailed analysis on the turnaround time required to realise the real saving after recovering investments. Applications are developed to integrate smart phones and tabloids providing web enablement to the end user. In this paper, each of the sensors and actuators in the smart room are associated with a state machine, which enables modelling of the system using Hybrid automata for future scope of applications
Evaluation of wheat chromosome translocation lines for high temperature stress tolerance at grain filling stage
Citation: Pradhan GP, Prasad PVV (2015) Evaluation of Wheat Chromosome Translocation Lines for High Temperature Stress Tolerance at Grain Filling Stage. PLoS ONE 10(2): e0116620. doi:10.1371/journal.pone.0116620High temperature (HT, heat) stress is detrimental to wheat (Triticum aestivum L.) production. Wild relatives of bread wheat may offer sources of HT stress tolerance genes because they grow in stressed habitats. Wheat chromosome translocation lines, produced by introgressing small segments of chromosome from wild relatives to bread wheat, were evaluated for tolerance to HT stress during the grain filling stage. Sixteen translocation lines and four wheat cultivars were grown at optimum temperature (OT) of 22/14°C (day/night). Ten days after anthesis, half of the plants were exposed to HT stress of 34/26°C for 16 d, and other half remained at OT. Results showed that HT stress decreased grain yield by 43% compared with OT. Decrease in individual grain weight (by 44%) was the main reason for yield decline at HT. High temperature stress had adverse effects on leaf chlorophyll content and Fv/Fm; and a significant decrease in Fv/Fm was associated with a decline in individual grain weight. Based on the heat response (heat susceptibility indices, HSIs) of physiological and yield traits to each other and to yield HSI, TA5594, TA5617, and TA5088 were highly tolerant and TA5637 and TA5640 were highly susceptible to HT stress. Our results suggest that change in Fv/Fm is a highly useful trait in screening genotypes for HT stress tolerance. This study showed that there is genetic variability among wheat chromosome translocation lines for HT stress tolerance at the grain filling stage and we suggest further screening of a larger set of translocation lines
Balanced Nutrition and Crop Production Practices for Closing Grain Sorghum Yield Gaps
A field experiment was conducted at the North Central Kansas Experiment Field near Scandia, KS, in the summer of 2014 to evaluate diverse cropping systems approaches to closing sorghum yield gaps. Yield gaps can be understood as the difference between maximum and attainable on-farm yields. The approach taken in this project is system wide, rather than focusing on one factor and its interaction. The factors that were tested include narrow row spacing; plant population; balanced nutrition practices, including various timings of nitrogen, phosphorus, and potassium (NPK) and micronutrient applications; crop protection with fungicide and insecticide applications; plant growth regulator effects; and the use of precision ag technology for maximizing yields, including a GreenSeeker meter (Trimble Navigation, Westminster, CO) for more precisely determining fertilizer nitrogen needs of sorghum. Grain sorghum yields ranged from 95 to 125 bu/a in Scandia under dryland conditions. One of the lowest yields was obtained when common practices were implemented (treatment 10), with an average 103 bu/a, whereas maximum yield was registered with the “kitchen sink (all inputs are applied)” treatment (treatment 1), with an average 115 bu/a. Notwithstanding the lack of treatment difference, the grain sorghum yield gap from a common practice to “kitchen sink” was 12 bu/a
Brust-Schiffrin Synthesis of Catalytic Bipodal PdPt Nanoparticles with Some Mechanistic Insights
Brust–Schiffrin reduction of Pd and Pt precursors in the presence of resorcinarene amine surfactant led to the formation of substantially Pt rich, PdPt bimetallic nanoparticles of a V-shape or variants on the V-shape. New insights into this reaction are provided on the basis of reversed Brust–Schiffrin syntheses, DLS, UV-vis, and NMR analysis. Based on our experiments we conclude that the resorcinarene amine surfactant is part of the inverse micelle formed from TOABr and it also selectively complexes with the Pd salts prior to their reduction. Remarkably, the composition of the bipodal nanoparticles could be varied substantially by varying the reaction conditions. These anisotropic Pt rich PdPt bimetallic nanoparticles are expected to play a major role in catalytic and electrocatalytic applications and preliminary evidence shows that they are effective in mediating Suzuki cross-coupling reactions
LATENTIATED PRODRUG APPROACH OF DRUGS: AN OVERVIEW
Prodrugs, with their capability of declining the adverse events and elevating the bioavailability of certain drugs, have captured enormous attention throughout the world since the 20th century. The versatility of the prodrugs that are inert and after administration releasing the parent moiety for the desired effect has become a major criterion for the scientists to incorporate this to alleviate the undesired effects of a conventional drug. About 10% of the prevailing drugs are prodrugs and their usage is being amplified owing to its critical application in cancer therapy, toxicity alleviation, and specificity. The purpose of this review is to understand the prodrugs, strategies incorporated in designing the prodrugs, applications, their crucial benefits in targeted action at a specific site of the body, their advantageous effects in chemotherapy. Also, to be acknowledged with the ongoing clinical trials and researches on prodrugs and some notable marketed prodrugs in a depth manner
Traumatic Clivus Epidural Hematoma: Case Report and Review of the Literature
BACKGROUND: Traumatic clival epidural hematoma is an extremely rare reported entity.
CASE DESCRIPTION: We describe the case of a 26-year-old woman involved in a car accident who presented with a Glasgow Coma Scale score of 13, bilateral abducens palsy, bilateral numbness on the mandibular territory of the trigeminal nerve, and left hypoglossal palsy. Radiological examinations revealed a clival epidural hematoma. The patient was managed conservatively, with clinical improvement of her neurological condition. This is the first traumatic clival epidural hematoma reported in an adult. From a review of the literature, we found only 8 cases.
CONCLUSION: The pathophysiology of these hematomas is still a subject of debate; occipitoatlantoaxial ligamentous instability may play a role in it. In one third of the cases, bilateral cranial nerve palsies were associated. Apparently, they have a benign outcome
Variability of root traits in spring wheat germplasm
Citation: Narayanan S, Mohan A, Gill KS, Prasad PVV (2014) Variability of Root Traits in Spring Wheat Germplasm. PLoS ONE 9(6): e100317. https://doi.org/10.1371/journal.pone.0100317Root traits influence the amount of water and nutrient absorption, and are important for maintaining crop yield under drought conditions. The objectives of this research were to characterize variability of root traits among spring wheat genotypes and determine whether root traits are related to shoot traits (plant height, tiller number per plant, shoot dry weight, and coleoptile length), regions of origin, and market classes. Plants were grown in 150-cm columns for 61 days in a greenhouse under optimal growth conditions. Rooting depth, root dry weight, root: shoot ratio, and shoot traits were determined for 297 genotypes of the germplasm, Cultivated Wheat Collection (CWC). The remaining root traits such as total root length and surface area were measured for a subset of 30 genotypes selected based on rooting depth. Significant genetic variability was observed for root traits among spring wheat genotypes in CWC germplasm or its subset. Genotypes Sonora and Currawa were ranked high, and genotype Vandal was ranked low for most root traits. A positive relationship (R2≥0.35) was found between root and shoot dry weights within the CWC germplasm and between total root surface area and tiller number; total root surface area and shoot dry weight; and total root length and coleoptile length within the subset. No correlations were found between plant height and most root traits within the CWC germplasm or its subset. Region of origin had significant impact on rooting depth in the CWC germplasm. Wheat genotypes collected from Australia, Mediterranean, and west Asia had greater rooting depth than those from south Asia, Latin America, Mexico, and Canada. Soft wheat had greater rooting depth than hard wheat in the CWC germplasm. The genetic variability identified in this research for root traits can be exploited to improve drought tolerance and/or resource capture in wheat
Cover Crop Impacts on Soil Water Status
Water is a primary concern for producers in the Great Plains; as such, research is warranted to quantify how much cover crops affect the amount of soil water available to subsequent cash crops. Cover crop mixes have been marketed as a means to conserve water in no-till cropping systems following winter wheat (Triticum aestivum L.) harvest. The objectives of this study are to quantify changes in soil profile water content in the presence of different cover crops and mixtures of increasing species complexity, to quantify their biomass productivity and quality, and to quantify the impact of cover crops on subsequent corn (Zea mays L.) yields. We hypothesized the change in soil water brought on by the cover crop treatments would be correlated to the quantity of biomass produced and the species composition, rather than mixture complexity. Soil moisture was measured using a neutron probe to a depth of 9 ft. Results from 2013–14 showed no difference in water use between cover crop mixtures and single species. Cover crops depleted the soil profile by a maximum of 3.5 in. during growth, but fallow was able to gain 0.75 in. of water during the same period. At the time of corn planting, soil moisture under all cover crops had replenished to levels at cover crop emergence, except for the brassicas, which had extracted water from deeper in the profile. Corn yields were reduced following the grass cover crops and the six-species mix. Corn yields were more closely related to the carbon:nitrogen (C:N) ratio of the cover crop residue than to profile soil moisture at corn emergence. The fact that yields were similar for corn after fallow and for corn after brassica cover crops implied that water was not the cause of yield reductions after the other cover crops
Optimization of machining characteristics during helical milling of AISI D2 steel considering chip geometry
Helical milling is one of the high-performance and high-quality hole manufacturing activities with strong prospects for the automotive and aerospace industries. Literature suggests chip geometry plays a significant role in optimizing machining operations. In the present study, a mechanistic approach is used to estimate the chip geometry, cutting force and power/energy consumption concerning the tool rotation angle. Experiments are conducted at different levels of spindle rotational speed, cutter orbital speed and axial depth of cuts using 8 and 10 mm diameter mill cutters. Experimental results for cutting speed in X, Y and Z directions are measured. A hybrid approach, which combines the Taguchi method and Graph theory and matrix approach (GTMA) technique is used and optimized process parameters. The highest aggregate utility process parameters are met by 2000 rpm spindle speed, 50 rpm orbital speed and 0.2 mm axial cutting depth during helical milling of AISI D2 steel. FEM simulation is used for predicting the chip thickness, cutting forces and power consumption and also validated the optimization
- …