2,955 research outputs found

    Off-critical Casimir effect in Ising slabs with antisymmetric boundary conditions in <i>d</i>=3

    Get PDF
    The universal scaling function W+−(y) of the Casimir force (y is a temperature-dependent variable) away from the critical point for thermodynamic systems in the Ising universality class confined between two parallel plates with antisymmetric boundary conditions [denoted (ab)=(+−)] has been analyzed using the extended de Gennes–Fisher local-functional method. Results on the universal function W+−(y) are presented in spatial dimension d=3 applying the extended sine parametric model for temperatures T>TR, where T>TR is the critical temperature of the roughening transition. The asymptotic behavior of W+−(y) for large values of the scaling variable y, y→±∞, is analyzed in general dimension d for T≫Tc, where Tc is the bulk critical temperature, and in d≥3 for T≪TR

    Affymetrix probes containing runs of contiguous guanines are not gene-specific

    Get PDF
    High Density Oligonucleotide arrays (HDONAs), such as the Affymetrix HG-U133A GeneChip, use sets of probes chosen to match specified genes, with the expectation that if a particular gene is highly expressed then all the probes in the designated probe set will provide a consistent message signifying the gene&#x27;s presence. However, we demonstrate by data mining thousands of CEL files from NCBI&#x27;s GEO database that 4G-probes (defined as probes containing sequences of four or more consecutive guanine (G) bases) do not react in the intended way. Rather, possibly due to the formation of G-quadruplexes, most 4G-probes are correlated, irrespective of the expression of the thousands of genes for which they were separately intended. It follows that 4G-probes should be ignored when calculating gene expression levels. Furthermore, future microarray designs should make no use of 4G-probes

    G-spots cause incorrect expression measurement in Affymetrix microarrays

    Get PDF
    Abstract Background High Density Oligonucleotide arrays (HDONAs), such as the Affymetrix HG-U133A GeneChip, use sets of probes chosen to match specified genes, with the expectation that if a particular gene is highly expressed then all the probes in that gene's probe set will provide a consistent message signifying the gene's presence. However, probes that contain a G-spot (a sequence of four or more guanines) behave abnormally and it has been suggested that these probes are responding to some biochemical effect such as the formation of G-quadruplexes. Results We have tested this expectation by examining the correlation coefficients between pairs of probes using the data on thousands of arrays that are available in the NCBI Gene Expression Omnibus (GEO) repository. We confirm the finding that G-spot probes are poorly correlated with others in their probesets and reveal that, by contrast, they are highly correlated with one another. We demonstrate that the correlation is most marked when the G-spot is at the 5' end of the probe. Conclusion Since these G-spot probes generally show little correlation with the other members of their probesets they are not fit for purpose and their values should be excluded when calculating gene expression values. This has serious implications, since more than 40% of the probesets in the HG-U133A GeneChip contain at least one such probe. Future array designs should avoid these untrustworthy probes. </jats:sec

    A Comparative Study of the Impact of G-Stack Probes on Various Affymetrix GeneChips of Mammalia

    Get PDF
    We have previously discovered that probes containing runs of four or more contiguous guanines are not reliable for measuring gene expression in the Human HG_U133A Affymetrix GeneChip data. These probes are not correlated with other members of their probe set, but they are correlated with each other. We now extend our analysis to different3′GeneChip designs of mouse, rat, and human. We find that, in all these chip designs, the G-stack probes (probes with a run of exactly four consecutive guanines) are correlated highly with each other, indicating that such probes are not reliable measures of gene expression in mammalian studies. Furthermore, there is no specific position of G-stack where the correlation is highest in all the chips. We also find that the latest designs of rat and mouse chips have significantly fewer G-stack probes compared to their predecessors, whereas there has not been a similar reduction in G-stack density across the changes in human chips. Moreover, we find significant changes in RMA values (after removing G-stack probes) as the number of G-stack probes increases.</jats:p

    Motif effects in Affymetrix GeneChips seriously affect probe intensities

    Get PDF
    An Affymetrix GeneChip consists of an array of hundreds of thousands of probes (each a sequence of 25 bases) with the probe values being used to infer the extent to which genes are expressed in the biological material under investigation. In this article, we demonstrate that these probe values are also strongly influenced by their precise base sequence. We use data from >28 000 CEL files relating to 10 different Affymetrix GeneChip platforms and involving nearly 1000 experiments. Our results confirm known effects (those due to the T7-primer and the formation of G-quadruplexes) but reveal other effects. We show that there can be huge variations from one experiment to another, and that there may also be sizeable disparities between batches within an experiment and between CEL files within a batch. © 2012 The Author(s)

    Generation of microseismic storms in the Coral Sea

    Get PDF

    Aircraft Electronic Instrumentation

    Get PDF

    Developing an On-Line Interactive Health Psychology Module.

    Get PDF
    On-line teaching material in health psychology was developed which ensured a range of students could access appropriate material for their course and level of study. This material has been developed around the concept of smaller 'content chunks' which can be combined into whole units of learning (topics), and ultimately, a module. On the basis of the underlying philosophy that the medium is part of the message, we considered interactivity to be a key element in engaging the student with the material. Consequently, the key aim of this development was to stimulate and engage students, promoting better involvement with the academic material, and hence better learning. It was hoped that this was achieved through the development of material including linked programmes and supporting material, small Java Scripts and basic email, forms and HTML additions. This material is outlined as are some of the interactive activities introduced, and the preliminary student and tutor experience described
    corecore