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Extended de Gennes-Fisher (EdGF) local-functional method has been applied to the thermodynamic

Casimir effect away from the critical point for systems in the Ising universality class confined between

parallel plane plates with symmetric boundary conditions [denoted ðabÞ ¼ ðþþÞ]. Results on the uni-

versal scaling functions of the Casimir force WþþðyÞ (y is a temperature-dependent scaling variable) and

Gibbs adsorption ~GðyÞ are presented in spatial dimension d ¼ 3. Also, the mean-field form of the uni-

versal scaling function of the Gibbs adsorption ~GðyÞ is derived within the local functional theory. Asymp-

totic behavior of WþþðyÞ for large values of the scaling variable y is analyzed in general dimension d.

DOI: 10.1103/PhysRevLett.101.125702 PACS numbers: 64.60.F�, 05.70.Jk, 68.15.+e

The Casimir effect in quantum or statistical physics
refers to long-range forces that emerge due to a confine-
ment on fluctuations. In statistical physics, these fluctua-
tions are in the order parameter of a thermodynamic system
at or near the critical point, as predicted in 1978 [1]. The
Casimir force (CF) depends on the nature of the confined
system as well as the boundary conditions (BC) and the
geometrical form of the confinement [2,3]. Much theoreti-
cal work has examined various surface universality classes
for Ising systems and classical fluids either exactly at
criticality or away from it [3]. Symmetry-breaking BC
(defined below) are of particular interest for experiments
with critical binary liquid mixtures. Appreciable agree-
ment pertaining to these systems has been achieved be-
tween theory [3–5] and recent experiments on the CF at
criticality in complete wetting films of binary-fluorocarbon
mixture near liquid vapor coexistence [6], with the mean
value of the universal Casimir amplitude (a measure of CF
at the bulk critical point, defined below) most closely
corresponding to earlier prediction of the local-functional
theory [4], while at the same time encompassing other
theoretical or simulation estimates [5]. Exact results on
the full-temperature dependence of the CF are available in
spatial dimensions d ¼ 2 [7] and d � 4 (mean-field the-
ory) [5,8] for both cases of symmetry-breaking BC.

Although significant theoretical effort has focused on
the universal scaling functions of the off-critical Casimir
effect, knowledge of them is still somewhat incomplete for
spatial dimension d ¼ 3, even for the relevant Ising uni-
versality class. Pertinent results in this case refer to films
with periodic BC, studied via Monte Carlo (MC) simula-
tions [9] or by the field-theoretic approach for Dirichlet,
Neumann, and periodic BC [10], besides recent MC results
that now include symmetry-breaking BC [11] and are most
relevant for the present content. In this Letter, a thermody-
namic system in the Ising universality class is considered
in the vicinity of the bulk critical point. The system is
confined between two parallel plane plates of area A sepa-

rated by distance L. We shall consider only those slabs
where an external symmetry-breaking boundary field has
been applied to both plates, i.e., a field h1 (respectively, h2)
acting on the plate at z ¼ 0 (respectively, z ¼ L), and
assume that fields h1 and h2 are of the same sign, h1h2 >
0, corresponding to the so called symmetric BC.
Thermodynamic CF is defined as a generalized force

conjugate to separation L between the plates

FCasimirðT;LÞ :¼ � @f�
@L , where f�ðT;LÞ is the reduced

incremental free energy defined by f�ðT;LÞ :¼
limA!1 F

kBTcA
� Lfb for free energy F with fb being the

reduced bulk free energy. It is characterized by the property
FCasimirðT;LÞ ! 0 as L! 1. According to the finite-size
scaling theory, critical phenomena near the bulk critical
temperature Tc and bulk field h ¼ 0 are governed by
universal scaling functions that depend on the ratio L=�
[12–16], where � is the bulk correlation length with
�ðt; h ¼ 0Þ � ��0 jtj��, as the reduced temperature t ¼
ðT � TcÞ=Tc ! 0�, ��0 nonuniversal amplitudes and � a

critical exponent. Then, the CF can be expressed in terms
of the universal scaling function Wabð�Þ [3]:

FCasimirðT;LÞ ¼ L�d?WabðyÞ; y ¼ c1tL
1=�; (1)

where c1 is a nonuniversal metric factor. The scaling
function WabðyÞ, having universal shape [3], does depend
on the definition of the correlation length. In order to allow
for the ‘‘natural’’ scaling variable, L=� (� is chosen as true
correlation length) to emerge in the local-functional ex-
pressions of WabðyÞ in the asymptotic limits y! �1,

considered shortly, we choose c1 ¼ 1=ð�þ0 Þ1=�. Exactly at

the critical temperature Tc, the scaling functions Wabð�Þ
give the universal Casimir amplitudes [1,3] Aab via
Wabð0Þ ¼ ðd? � 1ÞAab, as already considered within
local-functional theory for symmetric and antisymmetric
(þ�) (h1h2 < 0) BC [4]. Note that d? ¼ minðd; d>Þ,
where d is a spatial dimension and d> the upper critical
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dimension of the system, the Ising universality class has
d> ¼ 4.

The purpose of this Letter is to apply EdGF method
introduced by Fisher and Upton [17], in order to examine
the Casimir effect for systems of the Ising universality
class under the symmetric (þþ) BC over the whole tem-
perature range, in particular, in d ¼ 3, important in respect
to the experiments where more accurate theoretical analy-
sis of the above quantities has been missing until now. As a
nonperturbative approach, EdGF theory allows for calcu-
lation directly at a fixed spatial dimension, an advantage
over field-theoretic approach in terms of � expansion.

The local-functional method [17] asserts that magneti-
zation profilemðzÞ in film geometry is given by minimizing
a (local) interfacial functional F ½m�:

F ½m� :¼
Z L

0
Aðm; _m; t; hÞdzþ f1ðm1; h1Þ þ f2ðm2;h2Þ

(2)

where m1 ¼ mðz ¼ 0Þ, m2 ¼ mðz ¼ LÞ with fi ¼
�himi � gm2

i =2 (i ¼ 1, 2), the usual surface terms which
allow for the presence of external walls (at z ¼ 0 and z ¼
L), and _m ¼ dm=dz. The integrand A is assumed to take
the form which contains only bulk quantities [17]:
Aðm; _m; t; hÞ ¼ fJðmÞG½�ðm; t; hÞ _m� þ 1gWðm; t; hÞ,
whereWðm; t; hÞ ¼ �ðm; tÞ ��ðmb; tÞ � hðm�mbÞ, and
�ðm; tÞ is the bulk Helmholtz free energy density. The bulk
magnetization is denoted by mb, where for h ¼ 0, mb ¼
Bð�tÞ� for t < 0 and mb ¼ 0 for t > 0 with � a critical
exponent and B a nonuniversal amplitude. The function
GðxÞ is required to satisfy several properties [4,17]. As

before [17], we choose JðmÞ ¼ 1 and �ðm; t; hÞ :¼
�ðm; tÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�ðm; tÞWðm; t; hÞp
, where �ðm; tÞ and �ðm; tÞ

are, respectively, the bulk correlation length and suscepti-
bility of a homogenous system at (m, t). Mean-field theory
(d > 4) follows from having �ðm; tÞ take Landau form
with ð�2=2�Þðm; tÞ being constant in m and t. For more
general d > 1, bulk functions have the following analytic
scaling forms [17]:

Wðm; t; 0Þ � jmj�þ1Y�ðm=m0ðtÞÞ; (3a)

ð�2=2�Þðm; tÞ � jmj���=�Z�ðm=m0ðtÞÞ; (3b)

in the simultaneous scaling limits t! 0� and m! 0,
where m0ðtÞ :¼ Bjtj�, � is the critical bulk correlation
function exponent in standard notation.

Minimization of the functional, Eq. (2), yields the mag-
netization profile, mðzÞ, which for h1 > 0, contains a mini-
mum at z ¼ zþ with magnetization mþ :¼ mðzþÞ :¼
m0ðtÞw. The scaling variable y and w are related solely
in terms of universal quantities:

A2jyj� ¼
Z 1

w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Z�ðuÞ= ~Y�ðuÞ

q
du

u1þ�=�jĜ�1½1� ðw=uÞ1þ� ~Y�ðwÞ= ~Y�ðuÞ�j
(4)

where ĜðxÞ :¼xdG=dx�G, A2 :¼ R��=½Q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð�þ 1Þp �

is defined by the standard universal amplitudes [18] R� ¼
CþB��1D, Q2 ¼ ðCþ=CcÞð�c=�þ0 Þ2��, Cþ a nonuniversal

zero-field susceptibility amplitude above the critical tem-
perature, D, Cc, and �c defined along the critical isotherm:
(T ¼ Tc), h � Dm�, with Cc being the corresponding

susceptibility amplitude � � Ccjhj�ð1�1=�Þ and �c is de-

fined from �ðm; 0Þ � �cjhj��=��. The universal functions
~Yð�Þ and ~Zð�Þ are obtained from normalizing Yð�Þ and Zð�Þ,
respectively. The local-functional calculation of the CF
then follows from @f�=@L ¼ WðmþÞ, which yields the
universal scaling function WþþðyÞ for d < 4:

WþþðyÞ ¼ �A1jyj2��w1þ� ~Y�ðwÞ; (5)

with another universal constant A1 :¼ R�ðRþ
� Þd?=½ð1þ

�ÞRc�, defined by other standard universal amplitudes

[18] Rþ
� ¼ ð�AþÞ1=d?�þ0 and Rc ¼ �AþCþ=B2, where �

is the specific-heat exponent and Aþ a nonuniversal
specific-heat amplitude for t > 0 and h ¼ 0. Equa-
tions (4) and (5) determine completely universal WþþðyÞ
within the local-functional approach.
Asymptotic behavior ofWþþðyÞ as y! 1 follows from

Eqs. (4) and (5) by takingw! 0 from which Eq. (4) yields
y� � 2 lnðBþ=wÞ þOðwÞ, where Bþ is some universal
constant. Similarly, WþþðyÞ as y! �1 is obtained from
(4) and (5) by taking w! 1 yielding a similar expression
for jyj� but in terms of w� 1. Solving for w and substitut-
ing into Eq. (5) gives the following

WþþðyÞ�
��Wþ;1y2��expð�y�Þ; as y!þ1;
�W�;1jyj2��expð�U�jyj�Þ; as y!�1;

(6)

where U� ¼ �þ0 =��0 and W�;1 are new universal ampli-

tudes. The results summarized by Eq. (6) are general in
that they hold in arbitrary spatial dimension d. Previous
results, referring to some special cases, such as exact
calculations on the Ising strip [7], and on the Ising chain
subject to two identical surface fields, mean-field analysis
based on the Ginzburg-Landau ’4 Hamiltonian [5], as well
as mean-field treatments of confined fluids [8], confirm the
power-law-exponential behavior of WþþðyÞ shown in
Eq. (6).
In obtaining these results, one can, to a very good

approximation, set GðxÞ ¼ x2 [4]. This also applies to all
subsequent results pertaining to the symmetric BC and
greatly simplifies the calculations.
Mean-field form of WþþðyÞ in terms of the Jacobi

functions [5] follows also within local-functional approach
from Eqs. (4) and (5), when classical values for critical
exponents are employed along with the scaling functions
Y�ð�Þ and Z�ð�Þ for d � 4.
Excess (Gibbs) adsorption �ðt; hÞ.—The Gibbs adsorp-

tion, defined by �ðt; hÞ ¼ R
L
0 ½mðz; t; hÞ �mbðt; hÞ�dz, is an

integrated measure of the degree of ordering of spins or,

PRL 101, 125702 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

19 SEPTEMBER 2008

125702-2



equivalently, in the language of fluids, the amount of
adsorbed substance on the walls [19]. From the above
definition and the scaling postulate [3] mðz; L; TÞ �
m0ðtÞ þþðx; yÞ, x :¼ z=L, valid in the scaling limit t!
0, L! 1, z! 1, L� z! 1, follows

�ðt; 0Þ ¼ Bð�þ0 Þ�=�L1��=�GðyÞ; (7a)

GðyÞ :¼ jyj�
Z 1

0
½ þþðx; yÞ ��ð�yÞ�dx; (7b)

with GðyÞ universal and �ð�Þ the Heaviside function.
Asymptotically, GðyÞ � jyj��� as jyj ! 1 so that GðyÞ
vanishes for large y and d < 4, �< �. Since GðyÞ is not
smooth at y ¼ 0, we prefer to express results in terms of

the universal quantity ~GðyÞ, defined for d < 4 by

~GðyÞ ¼ GðyÞ þ jyj��ð�yÞ (8)

so that
R
L
0 mdz ¼ Bð�þ0 Þ�=�L1��=� ~GðyÞ. Local-functional

theory predicts that for d < 4

~GðyÞ ¼ ð1=A2Þy���
Z 1

w

ffiffiffiffiffiffiffiffiffi
~Z�ðuÞ
~Y�ðuÞ

r
du

u�=�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðwuÞ1þ�

~Y�ðwÞ
~Y�ðuÞ

r : (9)

For d � 4ð� ¼ � ¼ 1=2Þ, scaling forms given by
Eqs. (7a) and (7b) fail, and one has to redefine them to
encompass a logarithmic correction: in the limit L! 1
and t! 0, �ðL; TÞ � B�þ0 ½K1 lnLþGðyÞ� þ �0ðtÞ, with
K1 as a universal constant, and �0ðtÞ a nonuniversal addi-
tive background containing both analytic background
terms and singular corrections. Mean-field results that
follow from Eq. (9) when classical values of critical ex-
ponents are used along with the scaling forms ~YþðyÞ ¼
1þ 2=y2, ~Y�ðyÞ ¼ ð1� 1=y2Þ2, ~Z�ðuÞ ¼ 1 [one reads
them off from Eqs. (3a) and (3b) for d � 4] can be ex-
pressed in terms of a complete elliptic integral of the first
kind:

~GðyÞ ¼
8><
>:
� ffiffiffi

2
p

ln½2K2ðkÞ�; y ¼ 4ð2k2 � 1ÞK2ðkÞ; 1=2 	 k2 	 1;
� ffiffiffi

2
p

ln½2ð1� k2ÞK2ðkÞ�; y ¼ �4ð1þ k2ÞK2ðkÞ; 0 	 k 	 1;
� ffiffiffi

2
p

ln½2K2ðkÞ�; y ¼ �4ð1� 2k2ÞK2ðkÞ; 0 	 k2 	 1=2:

(10)

Mean-field universal scaling function ~GðyÞ is shown by
Fig. 2 below, together with the d ¼ 3 result.

To derive quantitative predictions at d ¼ 3 for WþþðyÞ
and ~GðyÞ, we need to substitute into Eqs. (4), (5), and (9)
specific values for bulk critical exponents along with suit-
able choices for Y�ðyÞ and Z�ðyÞ. We represent bulk scal-
ing functions using parametric models introduced by
Schofield [20]. These have been developed further
[17,21] and are believed to give the best available fits to
bulk data and, by their very construction, to give scaling
functions satisfying required analyticity properties. For our
purposes, pertaining to the present physical problem situ-
ated in a one-phase region, the original ‘‘linear’’ para-
metric model [12,20] was found to suffice [22]. At
d ¼ 3, we take � ¼ 0:328 and � ¼ 0:632 (all other ex-
ponents follow from the scaling relations) and a satisfac-
tory fit to the bulk amplitude ratios, being properties of
bulk scaling functions, is provided by taking b2 ¼ 1:30 and
a2 ¼ 0:28 in the notation of [21], in the linear model. The
universal scaling function WþþðyÞ that follows from our
calculations in d ¼ 3 is presented in Fig. 1 together with an
earlier exact curve in spatial dimensions d ¼ 2 [7] and d �
4 (mean-field) [5], which not being universal [23] is shown
in reduced universal form WþþðyÞ=Wþþð0Þ.

The d ¼ 3 result confirms qualitatively similar structure
of the CF in d ¼ 3 with the ones observed in all the other
spatial dimensions. This refers to the negative sign of the
CF for like BC, smoothness across the whole interval of
scaling variable y 2 R (apart from an jyj2�� singularity at
y ¼ 0, which can be shown to be quite general) as expected
based on the fact that the critical point of the film [TcðLÞ,

hcðLÞ] is located off the temperature axis at a nonzero
critical bulk field [24]. It also follows from this analysis
that the minimum ofWþþðyÞ in d ¼ 3 is located above the
critical point as in other dimensions. Figure 1 shows that
there is striking agreement between the present calculation
of WþþðyÞ and recent MC simulation results [11], with
quoted value ofWMCþþð0Þ ¼ �0:884 implying that the value
of the Casimir amplitude AMCþþ ¼ �0:442 is closer to this

FIG. 1 (color online). Plots of the scaling function WþþðyÞ for
the Ising universality class in (a) d ¼ 3 as obtained by local-
functional theory (solid line) and compared with MC result [11]
(open circles, rectangles, and triangles); exact d ¼ 2 (dashed
line) [7]; (b) d � 4, presented in a reduced (universal) form
derived for the first time in [5].
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and the earlier local-functional result of �0:42ð8Þ [4] as
compared to the previous MC study [5].

Numerical predictions for ~GðyÞ in d ¼ 3, based on the
EdGF Eqs. (4) and (9) within a parametric representation,
as well as analytic result in the mean-field limit according
to Eq. (10), are given by Fig. 2, showing smooth curves,
diverging as jyj� for y! �1 in accord with the general

definition of ~GðyÞ.
There is also much experimental and theoretical interest

in the Casimir effect for the antisymmetric BC (þ�) with
recent MC results presented for Wþ�ðyÞ [11]. In this case,
complications arise in the application of local-functional
methods for two main reasons: (i) the approximation
GðxÞ ¼ x2 no longer holds and one needs to use the far
more complicated form of GðxÞ as introduced in [4];
(ii) one needs to extend the bulk scaling functions Y�ð�Þ,
Z�ð�Þ into the two-phase region, a somewhat ad hoc pro-
cedure although possible if one uses trigonometric para-
metric models (instead of the linear model) [17,21] giving
rise to ‘‘nonclassical van der Waals loops.’’ However, this
more complicated calculation is possible and forms the
subject of ongoing research. More details will follow in a
longer report.

We kindly thank Professor S. Dietrich and Dr. O.
Vasilyev for making their MC data [11] available for us
that enabled comparisons with the present result of EdGF
theory within Fig. 1.
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