91 research outputs found

    Practical Saccade Prediction for Head-Mounted Displays: Towards a Comprehensive Model

    Get PDF
    Eye-tracking technology is an integral component of new display devices suchas virtual and augmented reality headsets. Applications of gaze informationrange from new interaction techniques exploiting eye patterns togaze-contingent digital content creation. However, system latency is still asignificant issue in many of these applications because it breaks thesynchronization between the current and measured gaze positions. Consequently,it may lead to unwanted visual artifacts and degradation of user experience. Inthis work, we focus on foveated rendering applications where the quality of animage is reduced towards the periphery for computational savings. In foveatedrendering, the presence of latency leads to delayed updates to the renderedframe, making the quality degradation visible to the user. To address thisissue and to combat system latency, recent work proposes to use saccade landingposition prediction to extrapolate the gaze information from delayedeye-tracking samples. While the benefits of such a strategy have already beendemonstrated, the solutions range from simple and efficient ones, which makeseveral assumptions about the saccadic eye movements, to more complex andcostly ones, which use machine learning techniques. Yet, it is unclear to whatextent the prediction can benefit from accounting for additional factors. Thispaper presents a series of experiments investigating the importance ofdifferent factors for saccades prediction in common virtual and augmentedreality applications. In particular, we investigate the effects of saccadeorientation in 3D space and smooth pursuit eye-motion (SPEM) and how theirinfluence compares to the variability across users. We also present a simpleyet efficient correction method that adapts the existing saccade predictionmethods to handle these factors without performing extensive data collection.<br

    Moving Women of Color from Reliable Voters to Candidates for Public Office

    Get PDF
    In recent presidential elections, women, people of color, millennials, and new immigrants shaped the outcomes of those elections. Women of color standing at the nexus of two underrepresented groups in politics- racial minorities and women- demonstrated their commitments to democracy by maintaining their traditions as reliable voters, far exceeding expectations. In this project, we ask what is necessary to move these women of color from reliable voters to candidates for political office and locate our answer with women of color. They are doing much of the work to deepen democratic engagement in communities of color, namely mobilizing voters and political candidates. They are redefining democratic inclusion, reshaping the electorate, and they stand to change the demographics of voters and officeholders alike. Likewise, they are redefining and disrupting traditional notions of political actors. How and why they see this as important work for themselves and their communities helps us to understand how people challenge exclusions and make a place for themselves, particularly in the political sphere which is marked by white, male dominance. Scholars have not documented this significant role women of color are playing in extending democracy and this documentation is critical to preserving women of color’s historic contributions to formal electoral politics. While the existing scholarship is rich in denoting the propensity of women of color to act as social change agents, we lag behind in scholarship recognizing the richness of their contributions to formal electoral politics. Their contributions deserve to be recorded and linked to the long line of scholarly engagements with women of color activism and leadership. We begin the project by establishing the landscape of existing WOC organizations, civic groups, collaborations and projects engaged in this work including the full landscape of programs, initiatives and organizations seeking to mobilize women of color as voters and political candidates. We explore their origin stories and contributions to civic engagement of marginalized groups. Our long term goals of the project are to strengthen the capacity of these organizations by bringing attention to their contributions; sharing best practices across groups that are not currently networked; and to leverage resources to strengthen their capacities

    Learning Foveated Reconstruction to Preserve Perceived Image Statistics

    Get PDF
    Foveated image reconstruction recovers full image from a sparse set of samples distributed according to the human visual system's retinal sensitivity that rapidly drops with eccentricity. Recently, the use of Generative Adversarial Networks was shown to be a promising solution for such a task as they can successfully hallucinate missing image information. Like for other supervised learning approaches, also for this one, the definition of the loss function and training strategy heavily influences the output quality. In this work, we pose the question of how to efficiently guide the training of foveated reconstruction techniques such that they are fully aware of the human visual system's capabilities and limitations, and therefore, reconstruct visually important image features. Due to the nature of GAN-based solutions, we concentrate on the human's sensitivity to hallucination for different input sample densities. We present new psychophysical experiments, a dataset, and a procedure for training foveated image reconstruction. The strategy provides flexibility to the generator network by penalizing only perceptually important deviations in the output. As a result, the method aims to preserve perceived image statistics rather than natural image statistics. We evaluate our strategy and compare it to alternative solutions using a newly trained objective metric and user experiments

    Robust co-immunoprecipitation with mass spectrometry for Caenorhabditis elegans using solid-phase enhanced sample preparation

    Get PDF
    Studying protein interactions in vivo can reveal key molecular mechanisms of biological processes. Co-immunoprecipitation with mass spectrometry detects protein–protein interactions with high throughput. The nematode Caenorhabditis elegans is a powerful genetic model organism for in vivo studies. Yet its rigid and complex tissues require optimization for biochemistry applications to ensure reproducibility. The authors optimized co-immunoprecipitation with mass spectrometry by combining a native co-immunoprecipitation procedure with single-pot, solid-phase enhanced sample preparation. The authors' results for the highly conserved chromatin regulator FACT subunits HMG-3 and HMG-4 demonstrated that single-pot, solid-phase enhanced sample preparation-integrated co-immunoprecipitation with mass spectrometry procedures for C. elegans samples are highly robust. Moreover, in an accompanying study about the chromodomain factor MRG-1 (MRG15 in humans), the authors demonstrated remarkably high reproducibility for ten replicate experiments

    SUMOylation of the chromodomain factor MRG-1 in C. elegans affects chromatin-regulatory dynamics

    Get PDF
    Epigenetic mechanisms to control chromatin accessibility and structure is important for gene expression in eukaryotic cells. Chromatin regulation ensures proper development and cell fate specification but is also essential later in life. Modifications of histone proteins as an integral component of chromatin can promote either gene expression or repression, respectively. Proteins containing specific domains such as the chromodomain recognize mono-, di- or tri-methylated lysine residues on histone H3. The chromodomain protein MRG-1 in Caenorhabditis elegans is the ortholog of mammalian MRG15, which belongs to the MORF4 Related Gene (MRG) family in humans. In C. elegans MRG-1 predominantly binds methylated histone H3 lysine residues at position 36 (H3K36me3). MRG-1 is important during germline maturation and for safeguarding the germ cell identity. However, it lacks enzymatic activity and depends on protein-protein interaction to cooperate with other factors to regulate chromatin. To elucidate the variety of MRG-1 interaction partners we performed in-depth protein-protein interaction analysis using immunoprecipitations coupled with mass-spectrometry. Besides previously described and novel interactions with other proteins, we also detected a strong association with the Small Ubiquitin-like Modifier (SUMO). Since SUMO is known to be attached to proteins in order to modulate the target proteins activity we assessed whether MRG-1 is post-translationally modified by SUMOylation. Notably, we provide evidence that MRG-1 is indeed SUMOylated and that this post-translational modification influences the chromatin-binding profile of MRG-1 in the C. elegans genome. Our presented study hints towards an important role of SUMOylation in the context of epigenetic regulation via the chromodomain protein MRG-1, which may be a conserved phenomenon also in mammalian species

    SUMOylation of the chromodomain factor MRG-1 in C. elegans affects chromatin-regulatory dynamics

    Get PDF
    Epigenetic mechanisms control chromatin accessibility and gene expression to ensure proper cell fate specification. Histone proteins are integral chromatin components, and their modification promotes gene expression regulation. Specific proteins recognize modified histones such as the chromodomain protein MRG-1. MRG-1 is the Caenorhabditis elegans ortholog of mammalian MRG15, which is involved in DNA repair. MRG-1 binds methylated histone H3 and is important for germline maturation and safeguarding. To elucidate interacting proteins that modulate MRG-1 activity, we performed in-depth protein-protein interaction analysis using immunoprecipitations coupled with mass spectrometry. We detected strong association with the Small ubiquitin-like modifier SUMO, and found that MRG-1 is post-translationally modified by SUMO. SUMOylation affects chromatin-binding dynamics of MRG-1, suggesting an epigenetic regulation pathway, which may be conserved

    The conserved histone chaperone LIN-53 is required for normal lifespan and maintenance of muscle integrity in Caenorhabditis elegans.

    Get PDF
    Whether extension of lifespan provides an extended time without health deteriorations is an important issue for human aging. However, to which degree lifespan and aspects of healthspan regulation might be linked is not well understood. Chromatin factors could be involved in linking both aging aspects, as epigenetic mechanisms bridge regulation of different biological processes. The epigenetic factor LIN-53 (RBBP4/7) associates with different chromatin-regulating complexes to safeguard cell identities in Caenorhabditis elegans as well as mammals, and has a role in preventing memory loss and premature aging in humans. We show that LIN-53 interacts with the nucleosome remodeling and deacetylase (NuRD) complex in C. elegans muscles to ensure functional muscles during postembryonic development and in adults. While mutants for other NuRD members show a normal lifespan, animals lacking LIN-53 die early because LIN-53 depletion affects also the histone deacetylase complex Sin3, which is required for a normal lifespan. To determine why lin-53 and sin-3 mutants die early, we performed transcriptome and metabolomic analysis revealing that levels of the disaccharide trehalose are significantly decreased in both mutants. As trehalose is required for normal lifespan in C. elegans, lin-53 and sin-3 mutants could be rescued by either feeding with trehalose or increasing trehalose levels via the insulin/IGF1 signaling pathway. Overall, our findings suggest that LIN-53 is required for maintaining lifespan and muscle integrity through discrete chromatin regulatory mechanisms. Since both LIN-53 and its mammalian homologs safeguard cell identities, it is conceivable that its implication in lifespan regulation is also evolutionarily conserved

    Use of facile mechanochemical method to functionalize carbon nanofibers with nanostructured polyaniline and their electrochemical capacitance

    Get PDF
    A facile approach to functionalize carbon nanofibers [CNFs] with nanostructured polyaniline was developed via in situ mechanochemical polymerization of polyaniline in the presence of chemically treated CNFs. The nanostructured polyaniline grafting on the CNF was mainly in a form of branched nanofibers as well as rough nanolayers. The good dispersibility and processability of the hybrid nanocomposite could be attributed to its overall nanostructure which enhanced its accessibility to the electrolyte. The mechanochemical oxidation polymerization was believed to be related to the strong Lewis acid characteristic of FeCl3 and the Lewis base characteristic of aniline. The growth mechanism of the hierarchical structured nanofibers was also discussed. After functionalization with the nanostructured polyaniline, the hybrid polyaniline/CNF composite showed an enhanced specific capacitance, which might be related to its hierarchical nanostructure and the interaction between the aromatic polyaniline molecules and the CNFs

    A Genome-Wide RNAi Screen for Factors Involved in Neuronal Specification in Caenorhabditis elegans

    Get PDF
    One of the central goals of developmental neurobiology is to describe and understand the multi-tiered molecular events that control the progression of a fertilized egg to a terminally differentiated neuron. In the nematode Caenorhabditis elegans, the progression from egg to terminally differentiated neuron has been visually traced by lineage analysis. For example, the two gustatory neurons ASEL and ASER, a bilaterally symmetric neuron pair that is functionally lateralized, are generated from a fertilized egg through an invariant sequence of 11 cellular cleavages that occur stereotypically along specific cleavage planes. Molecular events that occur along this developmental pathway are only superficially understood. We take here an unbiased, genome-wide approach to identify genes that may act at any stage to ensure the correct differentiation of ASEL. Screening a genome-wide RNAi library that knocks-down 18,179 genes (94% of the genome), we identified 245 genes that affect the development of the ASEL neuron, such that the neuron is either not generated, its fate is converted to that of another cell, or cells from other lineage branches now adopt ASEL fate. We analyze in detail two factors that we identify from this screen: (1) the proneural gene hlh-14, which we find to be bilaterally expressed in the ASEL/R lineages despite their asymmetric lineage origins and which we find is required to generate neurons from several lineage branches including the ASE neurons, and (2) the COMPASS histone methyltransferase complex, which we find to be a critical embryonic inducer of ASEL/R asymmetry, acting upstream of the previously identified miRNA lsy-6. Our study represents the first comprehensive, genome-wide analysis of a single neuronal cell fate decision. The results of this analysis provide a starting point for future studies that will eventually lead to a more complete understanding of how individual neuronal cell types are generated from a single-cell embryo

    SPE-44 Implements Sperm Cell Fate

    Get PDF
    The sperm/oocyte decision in the hermaphrodite germline of Caenorhabditis elegans provides a powerful model for the characterization of stem cell fate specification and differentiation. The germline sex determination program that governs gamete fate has been well studied, but direct mediators of cell-type-specific transcription are largely unknown. We report the identification of spe-44 as a critical regulator of sperm gene expression. Deletion of spe-44 causes sperm-specific defects in cytokinesis, cell cycle progression, and organelle assembly resulting in sterility. Expression of spe-44 correlates precisely with spermatogenesis and is regulated by the germline sex determination pathway. spe-44 is required for the appropriate expression of several hundred sperm-enriched genes. The SPE-44 protein is restricted to the sperm-producing germline, where it localizes to the autosomes (which contain sperm genes) but is excluded from the transcriptionally silent X chromosome (which does not). The orthologous gene in other Caenorhabditis species is similarly expressed in a sex-biased manner, and the protein likewise exhibits autosome-specific localization in developing sperm, strongly suggestive of an evolutionarily conserved role in sperm gene expression. Our analysis represents the first identification of a transcriptional regulator whose primary function is the control of gamete-type-specific transcription in this system
    corecore