1,648 research outputs found
Input noise approximation in tracker modeling
The validity of approximating random Gaussian distributed inputs used in human response modeling by sums of discrete sine waves is studied. An ideal rectangular power density spectrum is simulated using both filtered Gaussian white noise and sums-of-discrete sine waves with three different input cutoff frequencies in the same compensatory tracking task. Resulting normalized tracking error and quality operator observations are used to investigate apparent discrepancies in human operator characteristics. Results show that discrete and continuous input tracking data compare favorable when the power in the crossover region is taken into account
An Integral Field Study of Abundance Gradients in Nearby LIRGs
We present for the first time metallicity maps generated using data from the
Wide Field Spectrograph (WiFeS) on the ANU 2.3m of 9 Luminous Infrared Galaxies
(LIRGs) and discuss the abundance gradients and distribution of metals in these
systems. We have carried out optical integral field spectroscopy (IFS) of
several several LIRGs in various merger phases to investigate the merger
process. In a major merger of two spiral galaxies with preexisting disk
abundance gradients, the changing distribution of metals can be used as a
tracer of gas flows in the merging system as low metallicity gas is transported
from the outskirts of each galaxy to their nuclei. We employ this fact to probe
merger properties by using the emission lines in our IFS data to calculate the
gas-phase metallicity in each system. We create abundance maps and subsequently
derive a metallicity gradient from each map. We compare our measured gradients
to merger stage as well as several possible tracers of merger progress and
observed nuclear abundances. We discuss our work in the context of previous
abundance gradient observations and compare our results to new galaxy merger
models which trace metallicity gradient. Our results agree with the observed
flattening of metallicity gradients as a merger progresses. We compare our
results with new theoretical predictions that include chemical enrichment. Our
data show remarkable agreement with these simulations.Comment: Accepted for publication in ApJ. 26 pages, 18 figure
NASA advanced design program: Analysis, design, and construction of a solar powered aircraft
Increase in energy demands coupled with rapid depletion of natural energy resources have deemed solar energy as the most logical alternative source of power. The major objective of this project was to build a solar powered remotely controlled aircraft to demonstrate the feasibility of solar energy as an effective, alternate source of power. The final design was optimized for minimum weight and maximum strength of the structure. These design constraints necessitated a carbon fiber composite structure. Surya is a lightweight, durable aircraft capable of achieving level flight powered entirely by solar cells
A Deep Learning Approach to Galaxy Cluster X-ray Masses
We present a machine-learning approach for estimating galaxy cluster masses
from Chandra mock images. We utilize a Convolutional Neural Network (CNN), a
deep machine learning tool commonly used in image recognition tasks. The CNN is
trained and tested on our sample of 7,896 Chandra X-ray mock observations,
which are based on 329 massive clusters from the IllustrisTNG simulation. Our
CNN learns from a low resolution spatial distribution of photon counts and does
not use spectral information. Despite our simplifying assumption to neglect
spectral information, the resulting mass values estimated by the CNN exhibit
small bias in comparison to the true masses of the simulated clusters (-0.02
dex) and reproduce the cluster masses with low intrinsic scatter, 8% in our
best fold and 12% averaging over all. In contrast, a more standard core-excised
luminosity method achieves 15-18% scatter. We interpret the results with an
approach inspired by Google DeepDream and find that the CNN ignores the central
regions of clusters, which are known to have high scatter with mass.Comment: 10 pages, 6 figures, accepted for publication in The Astrophysical
Journa
The Dynamics of Galaxy Pairs in a Cosmological Setting
We use the Millennium Simulation, and an abundance-matching framework, to
investigate the dynamical behaviour of galaxy pairs embedded in a cosmological
context. Our main galaxy-pair sample, selected to have separations under 250
kpc/h, consists of over 1.3 million pairs at redshift z = 0, with stellar
masses greater than 10^9 Msun, probing mass ratios down to 1:1000. We use dark
matter halo membership and energy to classify our galaxy pairs. In terms of
halo membership, central-satellite pairs tend to be in isolation (in relation
to external more massive galaxies), are energetically- bound to each other, and
are also weakly-bound to a neighbouring massive galaxy. Satellite-satellite
pairs, instead, inhabit regions in close proximity to a more massive galaxy,
are energetically-unbound, and are often bound to that neighbour. We find that
60% of our paired galaxies are bound to both their companion and to a third
external object. Moreover, only 9% of our pairs resemble the kind of systems
described by idealised binary merger simulations in complete isolation. In sum,
we demonstrate the importance of properly connecting galaxy pairs to the rest
of the Universe.Comment: 25 pages, 14 figures, accepted by MNRA
Chemical pre-processing of cluster galaxies over the past 10 billion years in the IllustrisTNG simulations
We use the IllustrisTNG simulations to investigate the evolution of the
mass-metallicity relation (MZR) for star-forming cluster galaxies as a function
of the formation history of their cluster host. The simulations predict an
enhancement in the gas-phase metallicities of star-forming cluster galaxies
(10^9< M_star<10^10 M_sun) at z<1.0 in comparisons to field galaxies. This is
qualitatively consistent with observations. We find that the metallicity
enhancement of cluster galaxies appears prior to their infall into the central
cluster potential, indicating for the first time a systematic "chemical
pre-processing" signature for {\it infalling} cluster galaxies. Namely,
galaxies which will fall into a cluster by z=0 show a ~0.05 dex enhancement in
the MZR compared to field galaxies at z<0.5. Based on the inflow rate of gas
into cluster galaxies and its metallicity, we identify that the accretion of
pre-enriched gas is the key driver of the chemical evolution of such galaxies,
particularly in the stellar mass range (10^9< M_star<10^10 M_sun). We see
signatures of an environmental dependence of the ambient/inflowing gas
metallicity which extends well outside the nominal virial radius of clusters.
Our results motivate future observations looking for pre-enrichment signatures
in dense environments.Comment: 5 pages, 4 figures, accepted for publication in MNRAS Letter
Hot Gaseous Coronae around Spiral Galaxies: Probing the Illustris Simulation
The presence of hot gaseous coronae around present-day massive spiral
galaxies is a fundamental prediction of galaxy formation models. However, our
observational knowledge remains scarce, since to date only four gaseous coronae
were detected around spirals with massive stellar bodies
(). To explore the hot coronae around
lower mass spiral galaxies, we utilized Chandra X-ray observations of a sample
of eight normal spiral galaxies with stellar masses of . Although statistically significant diffuse X-ray emission is
not detected beyond the optical radii ( kpc) of the galaxies, we derive
limits on the characteristics of the coronae. These limits,
complemented with previous detections of NGC 1961 and NGC 6753, are used to
probe the Illustris Simulation. The observed upper limits on the
X-ray luminosities and gas masses exceed or are at the upper end of the model
predictions. For NGC 1961 and NGC 6753 the observed gas temperatures, metal
abundances, and electron density profiles broadly agree with those predicted by
Illustris. These results hint that the physics modules of Illustris are broadly
consistent with the observed properties of hot coronae around spiral galaxies.
However, a shortcoming of Illustris is that massive black holes, mostly
residing in giant ellipticals, give rise to powerful radio-mode AGN feedback,
which results in under luminous coronae for ellipticals.Comment: 12 pages, 6 figures, accepted for publication in Ap
Subclinical microcrania, subclinical macrocrarnia, and fifth-month fetal markers (of growth retardation or edema) in schizophrenia: a co-twin control study of discordant monozygotic twins.
Summary: We tested the hypothesis that gestational injuries in some patients with schozophrenia would leave their mark as a subtle reduction in head circumference (subclinical microcrania).
Conclusions: The head circumferences of all subjects were in the normal range. Decreased head circumference in affected MZ co-twins (relative to unaffected MZ co-twin) characteriazes discordant MZ pairs with larger finger-ridge-count differences (i.e., second-trimester fetal-size differences). This study using ideal genetic controls suggests that, while present only in some patients with schizophrenia, the decrease in head circumference is most likely a consequence of in-utero nonshared environmental deleterious events manifesting as groth retardation or as fetal edema and occurring around the fifth prenatal month
Coherent manipulation of charge qubits in double quantum dots
The coherent time evolution of electrons in double quantum dots induced by
fast bias-voltage switches is studied theoretically. As it was shown
experimentally, such driven double quantum dots are potential devices for
controlled manipulation of charge qubits. By numerically solving a quantum
master equation we obtain the energy- and time-resolved electron transfer
through the device which resembles the measured data. The observed oscillations
are found to depend on the level offset of the two dots during the manipulation
and, most surprisingly, also the on initialization stage. By means of an
analytical expression, obtained from a large-bias model, we can understand the
prominent features of these oscillations seen in both the experimental data and
the numerical results. These findings strengthen the common interpretation in
terms of a coherent transfer of electrons between the dots.Comment: 18 pages, 4 figure
- …
