research

Input noise approximation in tracker modeling

Abstract

The validity of approximating random Gaussian distributed inputs used in human response modeling by sums of discrete sine waves is studied. An ideal rectangular power density spectrum is simulated using both filtered Gaussian white noise and sums-of-discrete sine waves with three different input cutoff frequencies in the same compensatory tracking task. Resulting normalized tracking error and quality operator observations are used to investigate apparent discrepancies in human operator characteristics. Results show that discrete and continuous input tracking data compare favorable when the power in the crossover region is taken into account

    Similar works