4,461 research outputs found

    Quantum Monte Carlo calculation of entanglement Renyi entropies for generic quantum systems

    Full text link
    We present a general scheme for the calculation of the Renyi entropy of a subsystem in quantum many-body models that can be efficiently simulated via quantum Monte Carlo. When the simulation is performed at very low temperature, the above approach delivers the entanglement Renyi entropy of the subsystem, and it allows to explore the crossover to the thermal Renyi entropy as the temperature is increased. We implement this scheme explicitly within the Stochastic Series expansion as well as within path-integral Monte Carlo, and apply it to quantum spin and quantum rotor models. In the case of quantum spins, we show that relevant models in two dimensions with reduced symmetry (XX model or hardcore bosons, transverse-field Ising model at the quantum critical point) exhibit an area law for the scaling of the entanglement entropy.Comment: 5+1 pages, 4+1 figure

    Bosons in one-dimensional incommensurate superlattices

    Full text link
    We investigate numerically the zero-temperature physics of the one-dimensional Bose-Hubbard model in an incommensurate cosine potential, recently realized in experiments with cold bosons in optical superlattices L. Fallani et al., Phys. Rev. Lett. 98, 130404, (2007)]. An incommensurate cosine potential has intermediate properties between a truly periodic and a fully random potential, displaying a characteristic length scale (the quasi-period) which is shown to set a finite lower bound to the excitation energy of the system at special incommensurate fillings. This leads to the emergence of gapped incommensurate band-insulator (IBI) phases along with gapless Bose-glass (BG) phases for strong quasi-periodic potential, both for hardcore and softcore bosons. Enriching the spatial features of the potential by the addition of a second incommensurate component appears to remove the IBI regions, stabilizing a continuous BG phase over an extended parameter range. Moreover we discuss the validity of the local-density approximation in presence of a parabolic trap, clarifying the notion of a local BG phase in a trapped system; we investigate the behavior of first- and second-order coherence upon increasing the strength of the quasi-periodic potential; and we discuss the ab-initio derivation of the Bose-Hubbard Hamiltonian with quasi-periodic potential starting from the microscopic Hamiltonian of bosons in an incommensurate superlattice.Comment: 22 pages, 28 figure

    Strong Lensing by Galaxies

    Full text link
    Strong lensing is a powerful tool to address three major astrophysical issues: understanding the spatial distribution of mass at kpc and sub-kpc scale, where baryons and dark matter interact to shape galaxies as we see them; determining the overall geometry, content, and kinematics of the universe; studying distant galaxies, black holes, and active nuclei that are too small or too faint to be resolved or detected with current instrumentation. After summarizing strong gravitational lensing fundamentals, I present a selection of recent important results. I conclude by discussing the exciting prospects of strong gravitational lensing in the next decade.Comment: ARA&A Vol 48 in press; preprint version prepared by the author

    Chaos in Glassy Systems from a TAP Perspective

    Full text link
    We discuss level crossing of the free-energy of TAP solutions under variations of external parameters such as magnetic field or temperature in mean-field spin-glass models that exhibit one-step Replica-Symmetry-Breaking (1RSB). We study the problem through a generalized complexity that describes the density of TAP solutions at a given value of the free-energy and a given value of the extensive quantity conjugate to the external parameter. We show that variations of the external parameter by any finite amount can induce level crossing between groups of TAP states whose free-energies are extensively different. In models with 1RSB, this means strong chaos with respect to the perturbation. The linear-response induced by extensive level crossing is self-averaging and its value matches precisely with the disorder-average of the non self-averaging anomaly computed from the 2nd moment of thermal fluctuations between low-lying, almost degenerate TAP states. We present an analytical recipe to compute the generalized complexity and test the scenario on the spherical multi-pp spin models under variation of temperature.Comment: 12 pages, 2 figure

    Mars rover mechanisms designed for Rocky 4

    Get PDF
    A Mars rover prototype vehicle named Rocky 4 was designed and built at JPL during the fall of 1991 and spring 1992. This vehicle is the fourth in a series of rovers designed to test vehicle mobility and navigation software. Rocky 4 was the first attempt to design a vehicle with 'flight like' mass and functionality. It was consequently necessary to develop highly efficient mechanisms and structures to meet the vehicles very tight mass limit of 3 Kg for the entire mobility system (7 Kg for the full system). This paper will discuss the key mechanisms developed for the rover's innovative drive and suspension system. These are the wheel drive and strut assembly, the rocker-bogie suspension mechanism and the differential pivot. The end-to-end design, analysis, fabrication and testing of these components will also be discussed as will their performance during field testing. The lessons learned from Rocky 4 are already proving invaluable for the design of Rocky 6. Rocky 6 is currently being designed to fly on NASA's MESUR mission to Mars scheduled to launch in 1996

    On the monotonicity of scalar curvature in classical and quantum information geometry

    Full text link
    We study the statistical monotonicity of the scalar curvature for the alpha-geometries on the simplex of probability vectors. From the results obtained and from numerical data we are led to some conjectures about quantum alpha-geometries and Wigner-Yanase-Dyson information. Finally we show that this last conjecture implies the truth of the Petz conjecture about the monotonicity of the scalar curvature of the Bogoliubov-Kubo-Mori monotone metric.Comment: 20 pages, 2 .eps figures; (v2) section 2 rewritten, typos correcte
    corecore