98 research outputs found

    Coherent control of magnetization precession in ferromagnetic semiconductor (Ga,Mn)As

    Full text link
    We report single-color, time resolved magneto-optical measurements in ferromagnetic semiconductor (Ga,Mn)As. We demonstrate coherent optical control of the magnetization precession by applying two successive ultrashort laser pulses. The magnetic field and temperature dependent experiments reveal the collective Mn-moment nature of the oscillatory part of the time-dependent Kerr rotation, as well as contributions to the magneto-optical signal that are not connected with the magnetization dynamics.Comment: 6 pages, 3 figures, accepted in Applied Physics Letter

    Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation

    Get PDF
    Objective Mitochondrial disturbances of energy-generating systems in childhood are a heterogeneous group of disorders. The aim of this multi-site survey was to characterise the natural course of a novel mitochondrial disease with ATP synthase deficiency and mutation in the TMEM70 gene. Methods Retrospective clinical data and metabolic profiles were collected and evaluated in 25 patients (14 boys, 11 girls) from seven European countries with a c. 317-2A -> G mutation in the TMEM70 gene. Results Severe muscular hypotonia (in 92% of newborns), apnoic spells (92%), hypertrophic cardiomyopathy (HCMP; 76%) and profound lactic acidosis (lactate 5-36 mmol/l; 92%) with hyperammonaemia (100-520 mu mol/l; 86%) were present from birth. Ten patients died within the first 6 weeks of life. Most patients surviving the neonatal period had persisting muscular hypotonia and developed psychomotor delay. HCMP was non-progressive and even disappeared in some children. Hypospadia was present in 54% of the boys and cryptorchidism in 67%. Increased excretion of lactate and 3-methylglutaconic acid (3-MGC) was observed in all patients. In four surviving patients, life-threatening hyperammonaemia occurred during childhood, triggered by acute gastroenteritis and prolonged fasting. Conclusions ATP synthase deficiency with mutation in TMEM70 should be considered in the diagnosis and management of critically ill neonates with early neonatal onset of muscular hypotonia, HCMP and hypospadias in boys accompanied by lactic acidosis, hyperammonaemia and 3-MGC-uria. However, phenotype severity may vary significantly. The disease occurs frequently in the Roma population and molecular-genetic analysis of the TMEM70 gene is sufficient for diagnosis without need of muscle biopsy in affected children

    Optical determination of the NĂ©el vector in a CuMnAs thin-film antiferromagnet

    Get PDF
    Recent breakthroughs in electrical detection and manipulation of antiferromagnets have opened a new avenue in the research of non-volatile spintronic devices.1-10 Antiparallel spin sublattices in antiferromagnets, producing zero dipolar fields, lead to the insensitivity to magnetic field perturbations, multi-level stability, ultrafast spin dynamics and other favorable characteristics which may find utility in fields ranging from magnetic memories to optical signal processing. However, the absence of a net magnetic moment and the ultra-short magnetization dynamics timescales make antiferromagnets notoriously difficult to study by common magnetometers or magnetic resonance techniques. In this paper we demonstrate the experimental determination of the NĂ©el vector in a thin film of antiferromagnetic CuMnAs9,10 which is the prominent material used in the first realization of antiferromagnetic memory chips.10 We employ a femtosecond pump-probe magneto-optical experiment based on magnetic linear dichroism. This table-top optical method is considerably more accessible than the traditionally employed large scale facility techniques like neutron diffraction11 and Xray magnetic dichroism measurements.12-14 This optical technique allows an unambiguous direct determination of the NĂ©el vector orientation in thin antiferromagnetic films utilized in devices directly from measured data without fitting to a theoretical model

    KDIGO Controversies Conference on onco-nephrology: understanding kidney impairment and solid-organ malignancies, and managing kidney cancer

    Get PDF
    The association between kidney disease and cancer is multifaceted and complex. Persons with chronic kidney disease (CKD) have an increased incidence of cancer, and both cancer and cancer treatments can cause impaired kidney function. Renal issues in the setting of malignancy can worsen patient outcomes and diminish the adequacy of anticancer treatments. In addition, the oncology treatment landscape is changing rapidly, and data on tolerability of novel therapies in patients with CKD are often lacking. Caring for oncology patients has become more specialized and interdisciplinary, currently requiring collaboration among specialists in nephrology, medical oncology, critical care, clinical pharmacology/pharmacy, and palliative care, in addition to surgeons and urologists. To identify key management issues in nephrology relevant to patients with malignancy, KDIGO (Kidney Disease: Improving Global Outcomes) assembled a global panel of multidisciplinary clinical and scientific expertise for a controversies conference on onco-nephrology in December 2018. This report covers issues related to kidney impairment and solid organ malignancies as well as management and treatment of kidney cancer. Knowledge gaps, areas of controversy, and research priorities are described

    Analysis of neural crest-derived clones reveals novel aspects of facial development

    Get PDF
    Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal organization of the ectomesenchyme have not been determined. We investigated how neural crest cells give rise to clonally organized ectomesenchyme and how this early ectomesenchyme behaves during the developmental processes that shape the face. Using a combination of mouse and zebrafish models, we analyzed individual migration, cell crowd movement, oriented cell division, clonal spatial overlapping, and multilineage differentiation. The early face appears to be built from multiple spatially defined overlapping ectomesenchymal clones. During early face development, these clones remain oligopotent and generate various tissues in a given location. By combining clonal analysis, computer simulations, mouse mutants, and live imaging, we show that facial shaping results from an array of local cellular activities in the ectomesenchyme. These activities mostly involve oriented divisions and crowd movements of cells during morphogenetic events. Cellular behavior that can be recognized as individual cell migration is very limited and short-ranged and likely results from cellular mixing due to the proliferation activity of the tissue. These cellular mechanisms resemble the strategy behind limb bud morphogenesis, suggesting the possibility of common principles and deep homology between facial and limb outgrowth

    Altered developmental programs and oriented cell divisions lead to bulky bones during salamander limb regeneration

    Get PDF
    There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates
    • …
    corecore