78 research outputs found
INSPIRE: A phase III study of the BLP25 liposome vaccine (L-BLP25) in Asian patients with unresectable stage III non-small cell lung cancer
<p>Abstract</p> <p>Background</p> <p>Previous research suggests the therapeutic cancer vaccine L-BLP25 potentially provides a survival benefit in patients with locally advanced unresectable stage III non-small cell lung carcinoma (NSCLC). These promising findings prompted the phase III study, INSPIRE, in patients of East-Asian ethnicity. East-Asian ethnicity is an independent favourable prognostic factor for survival in NSCLC. The favourable prognosis is most likely due to a higher incidence of EGFR mutations among this patient population.</p> <p>Methods/design</p> <p>The primary objective of the INSPIRE study is to assess the treatment effect of L-BLP25 plus best supportive care (BSC), as compared to placebo plus BSC, on overall survival time in East-Asian patients with unresectable stage III NSCLC and either documented stable disease or an objective response according to the Response Evaluation Criteria in Solid Tumors (RECIST) criteria following primary chemoradiotherapy. Those in the L-BLP25 arm will receive a single intravenous infusion of cyclophosphamide (300 mg/m<sup>2</sup>) 3 days before the first L-BLP25 vaccination, with a corresponding intravenous infusion of saline to be given in the control arm. A primary treatment phase of 8 subcutaneous vaccinations of L-BLP25 930 μg or placebo at weekly intervals will be followed by a maintenance treatment phase of 6-weekly vaccinations continued until disease progression or discontinuation from the study.</p> <p>Discussion</p> <p>The ongoing INSPIRE study is the first large study of a therapeutic cancer vaccine specifically in an East-Asian population. It evaluates the potential of maintenance therapy with L-BLP25 to prolong survival in East-Asian patients with stage III NSCLC where there are limited treatment options currently available.</p> <p>Study number</p> <p>EMR 63325-012</p> <p>Trial Registration</p> <p>Clinicaltrials.gov reference: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01015443">NCT01015443</a></p
Hepatocyte Growth Factor Increases Osteopontin Expression in Human Osteoblasts through PI3K, Akt, c-Src, and AP-1 Signaling Pathway
BACKGROUND: Hepatocyte growth factor (HGF) has been demonstrated to stimulate osteoblast proliferation and participated bone remodeling. Osteopontin (OPN) is a secreted phosphoglycoprotein that belongs to the SIBLING family and is present during bone mineralization. However, the effects of HGF on OPN expression in human osteoblasts are large unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we found that HGF induced OPN expression in human osteoblasts dose-dependently. HGF-mediated OPN production was attenuated by c-Met inhibitor and siRNA. Pretreatment of osteoblasts with PI3K inhibitor (Ly294002), Akt inhibitor, c-Src inhibitor (PP2), or AP-1 inhibitor (curcumin) blocked the potentiating action of HGF. Stimulation of osteoblasts with HGF enhanced PI3K, Akt, and c-Src activation. In addition, incubation of cells with HGF also increased c-Jun phosphorylation, AP-1-luciferase activity, and c-Jun binding to the AP-1 element on the OPN promoter. HGF-mediated AP-1-luciferase activity and c-Jun binding to the AP-1 element was reduced by c-Met inhibitor, Ly294002, Akt inhibitor, and PP2. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the interaction between HGF and c-Met increases OPN expression in human osteoblasts via the PI3K, Akt, c-Src, c-Jun, and AP-1 signaling pathway
Protective Coupling of Mitochondrial Function and Protein Synthesis via the eIF2α Kinase GCN-2
Cells respond to defects in mitochondrial function by activating signaling pathways that restore homeostasis. The mitochondrial peptide exporter HAF-1 and the bZip transcription factor ATFS-1 represent one stress response pathway that regulates the transcription of mitochondrial chaperone genes during mitochondrial dysfunction. Here, we report that GCN-2, an eIF2α kinase that modulates cytosolic protein synthesis, functions in a complementary pathway to that of HAF-1 and ATFS-1. During mitochondrial dysfunction, GCN-2–dependent eIF2α phosphorylation is required for development as well as the lifespan extension observed in Caenorhabditis elegans. Reactive oxygen species (ROS) generated from dysfunctional mitochondria are required for GCN-2–dependent eIF2α phosphorylation but not ATFS-1 activation. Simultaneous deletion of ATFS-1 and GCN-2 compounds the developmental defects associated with mitochondrial stress, while stressed animals lacking GCN-2 display a greater dependence on ATFS-1 and stronger induction of mitochondrial chaperone genes. These findings are consistent with translational control and stress-dependent chaperone induction acting in complementary arms of the UPRmt
Sublethal Doses of Anthrax Lethal Toxin on the Suppression of Macrophage Phagocytosis
BACKGROUND: Lethal toxin (LT), the major virulence factor produced by Bacillus anthracis, has been shown to suppress the immune system, which is beneficial to the establishment of B. anthracis infections. It has been suggested that the suppression of MEK/MAPK signaling pathways of leukocytes contributes to LT-mediated immunosuppressive effects. However, the involvement of MAPK independent pathways has not been clearly elucidated; nor has the crucial role played by LT in the early stages of infection. Determining whether LT exerts any pathological effects before being enriched to an MEK inhibitory level is an important next step in the furtherance of this field. METHODOLOGY/PRINCIPAL FINDINGS: Using a cell culture model, we determined that low doses of LT inhibited phagocytosis of macrophages, without influencing MAPK pathways. Consistent low doses of LT significantly suppressed bacterial clearance and enhanced the mortality of mice with bacteremia, without suppressing the MEK1 of splenic and peripheral blood mononuclear cells. CONCLUSION/SIGNIFICANCE: These results suggest that LT suppresses the phagocytes in a dose range lower than that required to suppress MEK1 in the early stages of infection
Presentations of patients of poisoning and predictors of poisoning-related fatality: Findings from a hospital-based prospective study
<p>Abstract</p> <p>Background</p> <p>Poisoning is a significant public health problem worldwide and is one of the most common reasons for visiting emergency departments (EDs), but factors that help to predict overall poisoning-related fatality have rarely been elucidated. Using 1512 subjects from a hospital-based study, we sought to describe the demographic and clinical characteristics of poisoning patients and to identify predictors for poisoning-related fatality.</p> <p>Methods</p> <p>Between January 2001 and December 2002 we prospectively recruited poisoning patients through the EDs of two medical centers in southwest Taiwan. Interviews were conducted with patients within 24 hours after admission to collect relevant information. We made comparisons between survival and fatality cases, and used logistic regressions to identify predictors of fatality.</p> <p>Results</p> <p>A total of 1512 poisoning cases were recorded at the EDs during the study period, corresponding to an average of 4.2 poisonings per 1000 ED visits. These cases involved 828 women and 684 men with a mean age of 38.8 years, although most patients were between 19 and 50 years old (66.8%), and 29.4% were 19 to 30 years. Drugs were the dominant poisoning agents involved (49.9%), followed by pesticides (14.5%). Of the 1512 patients, 63 fatalities (4.2%) occurred. Paraquat exposure was associated with an extremely high fatality rate (72.1%). The significant predictors for fatality included age over 61 years, insufficient respiration, shock status, abnormal heart rate, abnormal body temperature, suicidal intent and paraquat exposure.</p> <p>Conclusion</p> <p>In addition to well-recognized risk factors for fatality in clinical settings, such as old age and abnormal vital signs, we found that suicidal intent and ingestion of paraquat were significant predictors of poisoning-related fatality. Identification of these predictors may help risk stratification and the development of preventive interventions.</p
A Novel Tetrameric PilZ Domain Structure from Xanthomonads
PilZ domain is one of the key receptors for the newly discovered secondary messenger molecule cyclic di-GMP (c-di-GMP). To date, several monomeric PilZ domain proteins have been identified. Some exhibit strong c-di-GMP binding activity, while others have barely detectable c-di-GMP binding activity and require an accessory protein such as FimX to indirectly respond to the c-di-GMP signal. We now report a novel tetrameric PilZ domain structure of XCC6012 from the plant pathogen Xanthomonas campestris pv. campestris (Xcc). It is one of the four PilZ domain proteins essential for Xcc pathogenicity. Although the monomer adopts a structure similar to those of the PilZ domains with very weak c-di-GMP binding activity, it is nevertheless interrupted in the middle by two extra long helices. Four XCC6012 proteins are thus self-assembled into a tetramer via the extra heptad repeat α3 helices to form a parallel four-stranded coiled-coil, which is further enclosed by two sets of inclined α2 and α4 helices. We further generated a series of XCC6012 variants and measured the unfolding temperatures and oligomeric states in order to investigate the nature of this novel tetramer. Discovery of this new PilZ domain architecture increases the complexity of c-di-GMP-mediated regulation
Fast Growth Increases the Selective Advantage of a Mutation Arising Recurrently during Evolution under Metal Limitation
Understanding the evolution of biological systems requires untangling the molecular mechanisms that connect genetic and environmental variations to their physiological consequences. Metal limitation across many environments, ranging from pathogens in the human body to phytoplankton in the oceans, imposes strong selection for improved metal acquisition systems. In this study, we uncovered the genetic and physiological basis of adaptation to metal limitation using experimental populations of Methylobacterium extorquens AM1 evolved in metal-deficient growth media. We identified a transposition mutation arising recurrently in 30 of 32 independent populations that utilized methanol as a carbon source, but not in any of the 8 that utilized only succinate. These parallel insertion events increased expression of a novel transporter system that enhanced cobalt uptake. Such ability ensured the production of vitamin B12, a cobalt-containing cofactor, to sustain two vitamin B12–dependent enzymatic reactions essential to methanol, but not succinate, metabolism. Interestingly, this mutation provided higher selective advantages under genetic backgrounds or incubation temperatures that permit faster growth, indicating growth-rate–dependent epistatic and genotype-by-environment interactions. Our results link beneficial mutations emerging in a metal-limiting environment to their physiological basis in carbon metabolism, suggest that certain molecular features may promote the emergence of parallel mutations, and indicate that the selective advantages of some mutations depend generically upon changes in growth rate that can stem from either genetic or environmental influences
The disruption of proteostasis in neurodegenerative diseases
Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio
- …