536 research outputs found

    Ocean deoxygenation: a primer

    Get PDF
    Earth’s ocean is losing oxygen; since the mid-20th century, 1%–2% of the global ocean oxygen inventory has been lost, and over 700 coastal sites have reported new or worsening low-oxygen conditions. This “ocean deoxygenation” is increasing and of great concern because of the potential magnitude of adverse changes to both global and local marine ecosystems. Oxygen is fundamental for life and biogeochemical processes in the ocean. In coastal and shelf regions and semi-enclosed seas, over-fertilization of waters largely from agriculture, sewage, and airborne sources creates algal blooms that die and decay, consuming oxygen. Globally, climate warming both exacerbates the problems from eutrophication and reduces the introduction of oxygen to the interior of the ocean. We discuss mechanisms, scale, assessments, projections, and impacts, including impacts to human well-being, at the individual, community, and ecosystem levels. Deoxygenation together with other stressors presents a major environmental challenge to sustainability and human use of the ocean

    Role of external inputs of nutrients to aquatic ecosystems in determining prevalence of nitrogen vs. phosphorus limitation of net primary productivity

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Howarth, R. W., Chan, F., Swaney, D. P., Marino, R. M., & Hayn, M. Role of external inputs of nutrients to aquatic ecosystems in determining prevalence of nitrogen vs. phosphorus limitation of net primary productivity. Biogeochemistry, (2021), https://doi.org/10.1007/s10533-021-00765-z.Whether net primary productivity in an aquatic ecosystem is limited by nitrogen (N), limited by phosphorus (P), or co-limited by N & P is determined by the relative supply of N and P to phytoplankton compared to their elemental requirements for primary production, often characterized by the “Redfield” ratio. The supply of these essential nutrients is affected by both external inputs and biogeochemical processes within the ecosystem. In this paper, we examine external sources of nutrients to aquatic systems and how the balance of N to P inputs influences nutrient limitation. For ocean subtropical gyres, a relatively balanced input of N and P relative to the Redfield ratio from deep ocean sources often leads to near co-limitation by N and P. For lakes, the external nutrient inputs come largely from watershed sources, and we demonstrate that on average the N:P ratio for these inputs across the United States is well above that needed by phytoplankton, which may contribute to P limitation in those lake that experience this average nutrient loading. Watershed inputs are also important for estuaries and coastal marine ecosystems, but ocean sources of nutrients are also significant contributors to overall nutrient loads. The ocean-nutrient sources of N and P are very often at or below the Redfield ratio of 16:1 molar, and can be substantially so, particularly in areas where the continental shelf is wide. This large input of coastal ocean nutrients with a low N:P ratio is one factor that may make N limitation more likely in many coastal marine ecosystems than in lakes.Preparation of this manuscript was supported by a National Science Foundation Grant # 1654845 from the Long Term Research in Environmental Biology program, a grant from the Atkinson Center for a Sustainable Future at Cornell University, and by an endowment given to Cornell by David R. Atkinson to support a professorship held by RWH

    Anthropogenic point-source and non-point-source nitrogen inputs into Huai River basin and their impacts on riverine ammonia–nitrogen flux

    Full text link
    This study provides a new approach to estimate both anthropogenic non-point-source and point-source nitrogen (N) inputs to the landscape, and determines their impacts on riverine ammonia-nitrogen (AN) flux, providing a foundation for further exploration of anthropogenic effects on N pollution. Our study site is Huai River basin of China, a water–shed with one of the highest levels of N input in the world. Multi-year average (2003-2010) inputs of N to the watershed are 27 200 ± 1100 kg N km-2 yr-1. Non-point sources comprised about 98 % of total N input, and only 2 % of inputs are directly added to the aquatic ecosystem as point sources. Fertilizer application was the largest non-point source of new N to the Huai River basin (69 % of net anthropogenic N inputs), followed by atmospheric deposition (20 %), N fixation in croplands (7 %), and N content of imported food and feed (2 %). High N inputs showed impacts on riverine AN flux: fertilizer application, point-source N input, and atmospheric N deposition were proved as more direct sources to riverine AN flux. Modes of N delivery and losses associated with biological denitrification in rivers, water consumption, interception by dams may influence the extent of export of riverine AN flux from N sources. Our findings highlight the importance of anthropogenic N inputs from both point sources and non-point sources in heavily polluted watersheds, and provide some implications for AN prediction and management.This study was financially supported by the Key Research Program of the Chinese Academy of Sciences (no. KZZD-EW-10-02-3), the 13th Five-Year Plan of Chinese Academy of Sciences (no. YSW2013B02) and State Key Laboratory of Urban and Regional Ecology scientific project (no. SKLURE2013-1-05). The authors wish to express their gratitude to the China Scholarship Council (201408110138) for funding the visiting venture that generated this paper, and to Huai River Basin Water Resources Protection Bureau and Hydrologic Information Center of Huai River Commission for providing water quality and hydrological data

    Opportunities to reduce nutrient inputs to the Baltic Sea by improving manure use efficiency in agriculture

    Get PDF
    While progress has been made in reducing external nutrient inputs to the Baltic Sea, further actions are needed to meet the goals of the Baltic Sea Action Plan (BSAP), especially for the Baltic Proper, Gulf of Finland, and Gulf of Riga sub-basins. We used the net anthropogenic nitrogen and phosphorus inputs (NANI and NAPI, respectively) nutrient accounting approach to construct three scenarios of reduced NANI-NAPI. Reductions assumed that manure nutrients were redistributed from areas with intense animal production to areas that focus on crop production and would otherwise import synthetic and mineral fertilizers. We also used the Simple as Necessary Baltic Long Term Large Scale (SANBALTS) model to compare eutrophication conditions for the scenarios to current and BSAP-target conditions. The scenarios suggest that reducing NANI-NAPI by redistributing manure nutrients, together with improving agronomic practices, could meet 54-82% of the N reductions targets (28-43 kt N reduction) and 38-64% P reduction targets (4-6.6 kt P reduction), depending on scenario. SANBALTS output showed that even partial fulfillment of nutrient reduction targets could have ameliorating effects on eutrophication conditions. Meeting BSAP targets will require addressing additional sources, such as sewage. A common approach to apportioning sources to external nutrients loads could enable further assessment of the feasibility of eutrophication management targets.Peer reviewe

    A Century of Legacy Phosphorus Dynamics in a Large Drainage Basin

    Get PDF
    There is growing evidence that the release of phosphorus (P) from legacy stores can frustrate efforts to reduce P loading to surface water from sources such as agriculture and human sewage. Less is known, however, about the magnitude and residence times of these legacy pools. Here we constructed a budget of net anthropogenic P inputs to the Baltic Sea drainage basin and developed a three-parameter, two-box model to describe the movement of anthropogenic P though temporary (mobile) and long-term (stable) storage pools. Phosphorus entered the sea as direct coastal effluent discharge and via rapid transport and slow, legacy pathways. The model reproduced past waterborne P loads and suggested an similar to 30-year residence time in the mobile pool. Between 1900 and 2013, 17 and 27 Mt P has accumulated in the mobile and stable pools, respectively. Phosphorus inputs to the sea have halved since the 1980s due to improvements in coastal sewage treatment and reductions associated with the rapid transport pathway. After decades of accumulation, the system appears to have shifted to a depletion phase; absent further reductions in net anthropogenic P input, future waterborne loads could decrease. Presently, losses from the mobile pool contribute nearly half of P loads, suggesting that it will be difficult to achieve substantial near-term reductions. However, there is still potential to make progress toward eutrophication management goals by addressing rapid transport pathways, such as overland flow, as well as mobile stores, such as cropland with large soil-P reserves.Peer reviewe

    Living on the Margin in the Anthropocene: Engagement Arenas for Sustainability Research and Action at the Ocean-Land Interface

    Get PDF
    The advent of the Anthropocene underscores the need to develop and implement transformative governance strategies that safeguard the Earth\u27s life-support systems, most critically at the ocean-land interface - the Margin. The seaward realm of the Margin is the new frontier for resource exploitation and colonization to meet the needs of coastal nations and humanity overall. Here, we spotlight the pivotal role of the Margin for planetary resilience and sustainability, highlight priority issues, and outline a research strategy which aims to: (a) better understand Margin social-ecological systems; (b) guide sustainable development of Margin resources; (c) design governance regimes to reverse unsustainable practices; (d) facilitate equitable sharing of Margin resources; and (e) evaluate alternative research approaches and partnerships that address major Margin challenges. © 2015 The Authors

    Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour

    Get PDF
    The mechanism of eukaryotic chemotaxis remains unclear despite intensive study. The most frequently described mechanism acts through attractants causing actin polymerization, in turn leading to pseudopod formation and cell movement. We recently proposed an alternative mechanism, supported by several lines of data, in which pseudopods are made by a self-generated cycle. If chemoattractants are present, they modulate the cycle rather than directly causing actin polymerization. The aim of this work is to test the explanatory and predictive powers of such pseudopod-based models to predict the complex behaviour of cells in chemotaxis. We have now tested the effectiveness of this mechanism using a computational model of cell movement and chemotaxis based on pseudopod autocatalysis. The model reproduces a surprisingly wide range of existing data about cell movement and chemotaxis. It simulates cell polarization and persistence without stimuli and selection of accurate pseudopods when chemoattractant gradients are present. It predicts both bias of pseudopod position in low chemoattractant gradients and-unexpectedly-lateral pseudopod initiation in high gradients. To test the predictive ability of the model, we looked for untested and novel predictions. One prediction from the model is that the angle between successive pseudopods at the front of the cell will increase in proportion to the difference between the cell's direction and the direction of the gradient. We measured the angles between pseudopods in chemotaxing Dictyostelium cells under different conditions and found the results agreed with the model extremely well. Our model and data together suggest that in rapidly moving cells like Dictyostelium and neutrophils an intrinsic pseudopod cycle lies at the heart of cell motility. This implies that the mechanism behind chemotaxis relies on modification of intrinsic pseudopod behaviour, more than generation of new pseudopods or actin polymerization by chemoattractant

    Current challenges in software solutions for mass spectrometry-based quantitative proteomics

    Get PDF
    This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.
    corecore