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Earth’s ocean is losing oxygen; since the mid-20th century, 1%–2% of the global ocean oxygen inventory has
been lost, and over 700 coastal sites have reported new or worsening low-oxygen conditions. This ‘‘ocean
deoxygenation’’ is increasing and of great concern because of the potential magnitude of adverse changes
to both global and local marine ecosystems. Oxygen is fundamental for life and biogeochemical processes in
the ocean. In coastal and shelf regions and semi-enclosed seas, over-fertilization of waters largely from agri-
culture, sewage, and airborne sources creates algal blooms that die and decay, consuming oxygen. Globally,
climate warming both exacerbates the problems from eutrophication and reduces the introduction of oxygen
to the interior of the ocean. We discuss mechanisms, scale, assessments, projections, and impacts,
including impacts to human well-being, at the individual, community, and ecosystem levels. Deoxygenation
together with other stressors presents a major environmental challenge to sustainability and human use of
the ocean.
The Ocean Is Losing Its Breath
Human pressure on Earth is increasing as human populations

and the scale of their impacts continue to expand. We highlight

here the global loss of dissolved oxygen in Earth’s ocean—called

ocean deoxygenation, which is occurring globally in coastal

waters, semi-enclosed seas, and the open ocean. Since the

mid-20th century, the oceans are estimated to have lost about

1%–2% of their oxygen inventory, and over 700 coastal systems

have reported low oxygen levels.

In estuaries and coastal seas adjacent to continents, over-

fertilization of water primarily from agriculture, sewage, and the

burning of fossil fuels has historically been the most important

driver. These low-oxygen areas are sometimes referred to as

‘‘dead zones,’’ although even where macrofauna are excluded

they host a rich microbial assemblage and are sites of important

biogeochemical processes.

In addition, climate warming is an increasingly important factor

driving the decline in dissolved oxygen in the world’s oceans, es-

tuaries, and seas, although this has received little recognition un-

til recently. It is difficult to understand the lack of appreciation of

deoxygenation as a climate issue. Given that societies have lived

with sewage- and fertilizer-driven oxygen loss for over a century,

it hasmost likely been treated as ‘‘just another’’ conventional wa-

ter-quality problem. However, it is increasingly becoming clear

to scientists studying ocean oxygen that nutrient and eutrophi-

cation effects are further exacerbated by warming, and vast

areas of low oxygen in the open ocean that are not driven by

excess nutrients are expanding. In the open ocean, the most

severely oxygen-depleted waters are typically several hundred

meters below the ocean surface and might not reach the sea

bottom. These are called oxygen minimum zones or OMZs. A

combination of winds and ocean circulation can bring the

deep, low-oxygen waters toward the surface and closer to shore
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in a process called upwelling. OMZs, as well as less severely ox-

ygen-depleted waters, are expanding as the ocean warms, and

in some regions of the world, upwelling is bringing more severely

oxygen-depleted water toward the shore.

What Is Deoxygenation, and How Is It Defined?
‘‘Hypoxia’’ is defined as a state of low oxygen at which physio-

logical and ecological processes are impaired. Hypoxia is often

operationally defined as 2 mg/L O2, equivalent to 1.4 mL/L or

63 mmol/L. In reality, there is wide variation among species and

processes in oxygen requirements, and defining hypoxia as a

single oxygen level is problematic. Although there are organisms

(including some fish species) that have adapted to life in very low

oxygen, many cannot tolerate even 2 mg/L hypoxia for long pe-

riods of time without experiencing some negative effects. In fact,

many fishes and invertebrates display hypoxia symptoms at

much higher levels of dissolved oxygen.

‘‘Anoxia’’ is defined as the absence of oxygen or, in an opera-

tional sense, oxygen concentrations that are too low to be

measured with available technology. In some contexts, such

as the Baltic Sea, anoxia is even indicated in negative units

because additional oxygen would be necessary to satisfy the

oxidation demand of the transformation of hydrogen sulfide to

sulfate under these chemically reducing conditions.

What Causes Deoxygenation?
As mentioned above, excess nutrient inputs from land-based

sources can drive hypoxia. Large watersheds such as the Mis-

sissippi River, which drains 41% of the contiguous United

States, deliver vast amounts of nutrients to the northern Gulf of

Mexico and other coastal ecosystems. These nutrients fuel

blooms of algae that eventually die off and decay. Microbes

that utilize aerobic (oxygen-dependent) respiration and break
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down the algae consume oxygen during that decomposition.

Hypoxia occurs when the rate of oxygen consumption exceeds

its replenishment through photosynthesis and mixing of the wa-

ter column.

Climate change is amplifying the problem of deoxygenation as

a result of the effects on the physical properties of water and on

the respiration rates of microbes and animals. Oxygen is not

easily dissolved in water, which holds less oxygen as it warms.

Warmer water is also less dense than colder water and tends

to stratify above colder water layers. In areas such as parts of

the Arctic and Antarctic, glacial meltwater from non-saline

snow and ice is less dense than seawater and contributes to sur-

face water layers as well. The net effect of stratification is to

reduce the mixing of bottom and surface waters such that bot-

tom waters are not re-aerated sufficiently (Figure 1).

Additionally, certain biogeochemical feedbacks can worsen

deoxygenation. Examples include so-called legacy phosphorus

that is buried in sediments from past algal bloom die-offs. Under

anoxic conditions, the phosphorus is released and can become

available in the water column as an input to algal blooms, stimu-

lating the cycle again. Similarly, anoxia can promote the forma-

tion of nitrous oxide (N2O), and acidifying dead organic matter

can stimulate the formation of methane, which can ultimately

be released to the atmosphere. Both are powerful greenhouse

gases equivalent to many times the heat-trapping ability of car-

bon dioxide. The contribution of oceans to global methane emis-

sions is small, however, and the net flux of N2O from the ocean to

the atmosphere is poorly characterized but could be important.

The Scale of the Problem
Prior to 1960, around 45 sites were known to have episodic or

chronic hypoxia. According to Robert Diaz and colleagues, the

rate of new sites that have reported hypoxia has roughly doubled

each decade since the 1960s (Figure 2). Today, there are over

700 sites of eutrophication-induced hypoxia, of which some

are responding to mitigation and restoration measures. How-

ever, there is clearly under-reporting of hypoxia in many parts

of the world, particularly in tropical regions and nations with

developing and less developed economies. On the basis of pop-

ulation densities and land uses, Diaz and colleagues estimate

that the number of hypoxic zones might actually stand at

1,000. OMZs are described in terms of area or volume. Currently

the extent is 8% of the world’s ocean area.

Although a 1%–2% drop in oxygen content of the world’s

oceans might not seem like very much, it is not evenly distrib-

uted, and many of the regions that have lost oxygen have been

among the most productive areas for fish and shellfish. These

include regions such as the northern Gulf of Mexico, the

upwelling regions off California and the Pacific Northwest, the

Chesapeake Bay, and the Baltic, Black, Bohai, Yellow, andMed-

iterranean Seas. In addition, the percent change in oxygen in

some regions exceeds the global average by an order of magni-

tude or more. The alarming extent of deoxygenated zones is a

cause for great concern, and dealing with the problem consti-

tutes a grand environmental challenge.

Assessing Global Deoxygenation
Getting a handle on deoxygenation requires the use of Earth sys-

tem models and extensive monitoring networks to provide data
for those models. The models track the sources and sinks of ox-

ygen as well as the mixing of water masses, governed by ocean-

atmosphere interactions. Sources include oxygen diffusing in

from the atmosphere and, importantly, oxygen produced by

photosynthesis in surface waters. Oxygen from its origin in sur-

face layers must be transported into deeper layers. Sinks include

oxygen consumption (respiration) by organisms, decay of

organic matter, and burial as carbonates and other oxides. A

large amount of uncertainty is evident in model projections; for

example, Oschlies and colleagues found that models of oxygen

change in the tropics predict only half of the oxygen loss

observed from data collection. Nevertheless, models forced

with greenhouse gas inputs from Intergovernmental Panel on

Climate Change projections point to substantial increases in ox-

ygen loss throughout the 21st century, even under optimistic sce-

narios of greenhouse gas reduction. Much of the loss will be at

mid- and high latitudes, and somemodels project some recovery

in OMZs as a result of lower ocean primary production as climate

change progresses, resulting in lower ecosystem respiration.

Effects on Marine Organisms
Low dissolved oxygen compromises many, but not all, biological

functions and life forms. Insufficient oxygen can reduce growth,

reproduction, and survival; make animals more susceptible to

disease and to predation by more hypoxia-tolerant species;

and alter distributions. Although some organisms can utilize

anaerobic respiration, in which an element other than oxygen

is the terminal electron acceptor, the lack of oxygen has strong

effects on energetics. Aerobic metabolism is far more efficient

than anaerobic respiration at producing energy from organic

matter. A molecule of glucose yields 39 ATP molecules aerobi-

cally but only about three ATP molecules under anaerobic

metabolism. Thus, as oxygen declines, a cascade of physiolog-

ical responses occurs. The ‘‘scope for metabolic activity’’ (the

difference in metabolic rate of active and inactive organisms) de-

clines and can be exacerbated by changes in other stressors,

such as an increase in temperature or changes in salinity. Phys-

iologists measure the partial pressure of oxygen (PO2
) to track

oxygen consumption and requirements for metabolism. The

level at which an organism can no longer maintain aerobic meta-

bolism is called the critical partial pressure (Pcrit), at which point

the organism might not be able to survive in the environment for

long periods of low oxygen. Taken at a species or community

level, this means that community composition (i.e., the mix of

species) and species interactions will change as different spe-

cies’ tolerances are approached or exceeded. Thus, individual

responses can scale up to changes in community structure

and ecosystem function. Recently, Wishner and colleagues

showed that some zooplankton species in the eastern tropical

North Pacific OMZ are living very close to their physiological

limits; thus, even small changes that lower PO2
could have large

consequences.

Effects on Marine Ecosystems
The ecosystem effects of deoxygenation are varied and depend

on the mix of species, relative tolerances, and species interac-

tions, in addition to the magnitude, frequency, and duration of

hypoxia events. Mobile organisms tend to flee low oxygen, and

this can involve small or large movements depending on the
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Figure 1. Schematic Showing Drivers, Processes, and Consequences of Deoxygenation
Source: Global Ocean Oxygen Network (2018).
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event. Organisms that cannot avoid low levels of oxygen,

including those in mariculture sites, can become lethargic or

die. Increasingly, hypoxic bottom areas become devoid of inver-

tebrates and fish. Microbial communities can persist or develop

and can re-route the flows of elements, such as carbon and ni-

trogen, in the system.
26 One Earth 2, January 24, 2020
Mobile organisms that move away from hypoxia can concen-

trate in better oxygenated habitats. For example, sharks and

tunas, which have high metabolic rates, are being found increas-

ingly at shallower depths given that deeper waters are subject to

oxygen depletion. Loss of oxygenated habitat, called habitat

compression, can alter the encounters and interactions of



Figure 2. Global Distribution of Deoxygenation in the Coastal and Global Ocean
Source: Breitburg et al. (2018).
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predators and prey species. This means that forcing organisms

together into a compressed habitat can reconfigure food webs.

Deoxygenation does not occur in isolation; marine organ-

isms and ecosystems are affected by a wide range of

stressors caused by human activities. Where deoxygenation

is driven by climate change, low oxygen occurs together

with rising temperatures and acidification. Where nutrients

are an important driver, algal blooms occur. Pathogens are

transported by shipping and aquaculture, and their transmis-

sion and severity of effects can be enhanced when oxygen

is low. Because fishing generally reduces population abun-

dance and biomass, exploited species are potentially more

susceptible to assaults from additional stressors such as hyp-

oxia. And perhaps most important, oxygen supply to an organ-

ism dependent on aerobic respiration determines the energy it

has available to protect itself from, and repair damage caused

by, other stressors.

Some effects of hypoxia can be masked and appear to be

driven by warming. As is the case for other life forms, corals

are differentially sensitive to oxygen, temperature, and their in-

teractions. Altieri and colleagues found that coral bleaching

events, commonly thought to be caused by warm tempera-

tures, could also be triggered by hypoxia and that some corals

are more sensitive to oxygen than to other stressors. Assessing

the likelihood of coral susceptibility to hypoxia, these re-

searchers concluded that this is greatly underestimated.

Climate warming has other knock-on effects on hypoxia. In

addition to raising metabolic rates and therefore increasing

oxygen requirements, an increasing frequency of ‘‘ocean

heatwaves’’ has been documented. In coastal areas, this has

resulted in die-offs of aquatic macrophytes such as sea-

grasses. The loss of seagrasses further reduces oxygen

production and also lowers habitat quality by removing three-

dimensional structures for fishes and other organisms to

shelter in.
Effects on Fisheries
It has been difficult to document effects on fisheries, particularly

economic effects, because they can be varied and complex

(e.g., by interacting with fishing fleet behavior and market de-

mand). Both fish size and quality of harvestable biomass can

be affected. In the Gulf of Mexico, the Atlantic croaker, an abun-

dant species that has been documented to suffer reproductive

effects and loss of growth as a result of hypoxia exposure, is pro-

jected to have a long-term reduction in abundance of 25%. In

other Gulf fisheries, such as menhaden or other pelagics, how-

ever, little or no effect has been observed.

Fishing behaviors can be affected by hypoxia. Purcell and col-

leagues found declines in Gulf of Mexico shrimping activity at

dissolved oxygen concentrations less than 2 mg/L, and fishers

followed the shrimp toward the hypoxia edge where concentra-

tions were higher. When larger shrimp were reduced in abun-

dance by hypoxia, the smaller shrimp that were caught instead

fetched lower prices.

Hypoxia can also magnify the impacts of fishing, resulting ulti-

mately in lower catches. In the Hood Canal, a fjord-like estuary in

Puget Sound in the northwestern United States, hypoxia caused

Dungeness crabs to move up and concentrate in shallower

areas, increasing their vulnerability to both legal and illegal fish-

ing and leading to overfishing. Additionally, incidental mortality

(bycatch when not targeted) increased when crabs were

captured in hypoxic conditions.

In open seas where billfish and tuna habitats are becoming

vertically compressed by the expansion of OMZs, some species

and stocks can become more concentrated at shallower depths

and thus more vulnerable to being caught. The same is true in

some periods for fishes (e.g., anchovies, sardines, and grouper)

and their fisheries in the eastern boundary upwelling systems,

such as off Peru and West Africa. In the case of billfishes,

increased catchability when they are forced to ‘‘shallow’’ is not

included in stock assessment models and could lead to overly
One Earth 2, January 24, 2020 27



Figure 3. A Starving Baltic Sea Cod, whose Condition Has Been Affected by Extensive Time Spent in Hypoxic Bottom Water
Photo credit: Folke Rydén Productions.

One Earth

Primer
optimistic estimates of abundance and eventually overfishing. In

general, including deoxygenation in planning for fisherymanage-

ment is an important component of adaptation.

A case of more extreme fishery impacts is emerging in the

Baltic Sea, one of the largest anthropogenic ‘‘dead zones.’’ As

a semi-enclosed brackish sea surrounded by nine countries,

the Baltic has been subjected to high loads of nitrogen and

phosphorus for decades, driving eutrophication and hypoxia

with enlarging areas over time. Atlantic cod constitute one of

the iconic fisheries in the Baltic; for years they have been in

decline, and blame has variously been assigned to overfishing,

fishery mismanagement, climate-driven shifts in ecosystem

regime, and hypoxia. Examining fishery-independent statistics,

Casini and colleagues tested a number of factors possibly

responsible for the decline and found that hypoxia explained

the greatest amount of variation. In a different, novel study,

Limburg and Casini applied chemical proxies of hypoxia expo-

sure in the fishes’ otoliths (ear stones), which are small, calcified

structures that form part of the fish hearing and balance system.

The otolith chemistry can be interpreted for evaluating lifetime

exposure. The researchers found that highly exposed fish

grew less: by 3 years of age, they were 39% smaller (weighing

64% less on average) than healthy cod. The proxy also con-

nects hypoxia exposure directly to the worsened physical con-

dition of the cod, another aspect that has been debated among

scientists (Figure 3). The Baltic cod might represent an extreme
28 One Earth 2, January 24, 2020
case of sensitivity to hypoxia. The population is dwindling; given

the warming projections that intensify hypoxia, the prognosis

for Baltic cod is grim.

Effect of Hypoxia on Ecosystem Services
Ecosystem services are those aspects of nature that support hu-

man well-being. These have been described in four main cate-

gories: provisioning, regulating, supporting, and cultural and/or

aesthetic. To date, very few studies have tried to quantify

ecosystem services either at risk from or enhanced by deoxy-

genation. The most obvious service at risk is the provisioning

of fish as food. Documented fish kills from hypoxia or anoxia

have driven home the impact. In the Philippines, aquaculture

farms lost tons of fish in several hypoxia events. The dead fish

released histamines that poisoned many who consumed them.

Other forms of aquaculture, including shellfish farming, are

also at risk from the combination of low oxygen and low pH.

As discussed in the case study of Baltic Sea cod, one provi-

sioning service that can be assessed, through the combination

of datasets such as otolith chemistry and fishery-independent

surveys, is the ‘‘foregone biomass’’ that does not develop as a

result of hypoxia. In other words, what is the amount of marine

food biomass that did not occur because of hypoxia? This will

take on relevancy as a food-security issue if hypoxia expands,

and it also could become a biological endpoint for the manage-

ment and recovery of hypoxic areas.
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Supporting ecosystem services include such ecosystem

properties as habitat availability for organisms to carry out their

life histories, nutrient cycling, and biodiversity as a proxy of

healthy ecosystem functioning. Deoxygenation reduces habitat

availability and biodiversity. In Southeast Asia, particularly in

the Coral Triangle waters of Indonesia, Malaysia, and the

Philippines, high marine biodiversity will potentially be affected

by deoxygenation. Similar to the foregone biomass of fish, it

should be possible to quantify or index the foregone production

of marine invertebrates that support fish and production. The

supporting service of biogeochemical cycling could have the

adverse effect of favoring greenhouse gas production. Hypoxia’s

effect on regulating services (i.e., processes that regulate

climate, maintain water and air quality, mitigate natural hazards,

etc.) is highly uncertain, except for worsening water quality.

As for cultural and/or aesthetic services, deoxygenation might

be affecting traditional (indigenous) uses of seafood or other re-

sources associated with the sea. For example, traditional fish-

eries on coral reefs might be imperiled by hypoxic episodes in

some locations. Additionally, recreational uses of the sea could

be reduced in response to noxious events such as fish kills or

the degradation of underwater habitats. And finally, in some

cases low oxygen seascapes could be unaesthetic below the

surface, even if amenities on land might still be appealing.

What Can Be Done to Reduce Deoxygenation?
The most important and most difficult step toward reducing

deoxygenation is to bring down the global discharge of green-

house gases. National economies are confronted by political dis-

agreements, which make rapid change very difficult. Yet if this is

not accomplished within the next decade, it might be too late,

and runaway warming could be inevitable. The modest

agreements at the 2019 United Nations Climate Change Confer-

ence (COP25) highlight the difficulties of international climate

negotiations.

At local and regional scales, however, stakeholders can make

substantial improvements toward reducing and managing

nutrient inputs to allow eutrophic systems to recover.

Decreasing land-based loading and atmospheric sources are

verymuch needed, particularly in Asia. The good news is that ac-

tion can produce results. A successful case study is Tampa Bay,

Florida, which has successfully managed nutrient discharges,

protected and restored seagrasses and fringing wetlands, and

brought back fish and wildlife. A much larger case of success

in nutrient management is the Baltic Sea drainage basin, where

the cooperation of the nine surrounding countries has brought

down nutrient levels substantially by following an action plan

that has implemented sustainable farming practices and

improved sewage treatment around the basin. However, legacy

phosphorus in the sediments will continue to be recycled for

several decades and, combined with climate effects on temper-

ature and rainfall, make improving oxygen content a stubborn

problem.

In the end, however, it is likely that many regions globally will

be facing the impacts of ocean and coastal deoxygenation.

Adaptive planning for assessing and addressing change will be

needed. More and better ocean and coastal observation infra-
structure is needed, and continued improvement of models

that use the data will be necessary for understanding and projec-

ting the magnitude and trends in oxygen in the world’s waters.
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