12 research outputs found
APOPTOSIS INDUCTION OF CENTELLA ASIATICA ON HUMAN BREAST CANCER CELLS
The present study evaluated the ability of methanolic extract of Centella asiatica (Linn) Urban (Umbelliferae) to induce apoptosis in different cancer cell lines. MCF-7 cells emerged as the most sensitive cell line for in vitro growth inhibitory activity. C. asiatica extract induced apoptosis in MCF-7 cells as indicated by nuclear condensation, increased annexin staining, loss of mitochondrial membrane potential and induction of DNA breaks identified by TUNEL reactivity. It is possible that the use of C. asiatica extract as a component in herbal medicines could be justifiable
Targeting tumor-associated macrophages by anti-tumor Chinese materia medica
Tumor-associated macrophages (TAMs) play a key role in all stages of tumorigenesis and tumor progression. TAMs secrete different kinds of cytokines, chemokines, and enzymes to affect the progression, metastasis, and resistance to therapy depending on their state of reprogramming. Therapeutic benefit in targeting TAMs suggests that macrophages are attractive targets for cancer treatment. Chinese materia medica (CMM) is an important approach for treating cancer in China and in the Asian region. According to the theory of Chinese medicine (CM) and its practice, some prescriptions of CM regulate the body's internal environment possibly including the remodeling the tumor microenvironment (TME). Here we briefly summarize the pivotal effects of TAMs in shaping the TME and promoting tumorigenesis, invasion, metastasis and immunosuppression. Furthermore, we illustrate the effects and mechanisms of CMM targeting TAMs in antitumor therapy. Finally, we reveal the CMM's dual-regulatory and multi-targeting functions on regulating TAMs, and hopefully, provide the theoretical basis for CMM clinical practice related to cancer therapy
Supplementary Material for: Aloe Emodin Induces G2/M Cell Cycle Arrest and Apoptosis via Activation of Caspase-6 in Human Colon Cancer Cells
Aloe emodin (AE), a natural anthraquinone, is reported to have antiproliferative activity in various cancer cell lines. In this study, we analyzed the molecular mechanisms involved in the growth-inhibitory activity of this hydroxyanthraquinone in colon cancer cell, WiDr. In our observation AE inhibited cell proliferation by arresting the cell cycle at the G2/M phase and inhibiting cyclin B1. AE appreciably induced cell death specifically through the induction of apoptosis and by activating caspases 9/6. Apoptotic execution was found to be solely dependent on caspase-6 rather than caspase-3 or caspase-7. This is the first study indicating that the AE induces apoptosis specifically through the activation of caspase-6
An anthraquinone derivative, emodin sensitizes hepatocellular carcinoma cells to TRAIL induced apoptosis through the induction of death receptors and downregulation of cell survival proteins
10.1007/s10495-013-0851-5Apoptosis18101175-1187APOP