19 research outputs found

    Virtual screening, identification and experimental testing of novel inhibitors of PBEF1/Visfatin/NMPRTase for glioma therapy

    Get PDF
    Background: Pre-B-cell colony enhancing factor 1 gene (PBEF1) encodes nicotinamide phosphoribosyltransferase (NMPRTase), which catalyses the rate limiting step in the salvage pathway of NAD+ metabolism in mammalian cells. PBEF1 transcript and protein levels have been shown to be elevated in glioblastoma and a chemical inhibitor of NMPRTase has been shown to specifically inhibit cancer cells. Methods: Virtual screening using docking was used to screen a library of more than 13,000 chemical compounds. A shortlisted set of compounds were tested for their inhibition activity in vitro by an NMPRTase enzyme assay. Further, the ability of the compounds to inhibit glioma cell proliferation was carried out. Results: Virtual screening resulted in short listing of 34 possible ligands, of which six were tested experimentally, using the NMPRTase enzyme inhibition assay and further with the glioma cell viability assays. Of these, two compounds were found to be significantly efficacious in inhibiting the conversion of nicotinamide to NAD+, and out of which, one compound, 3-amino-2-benzyl-7-nitro-4-(2-quinolyl-)-1,2-dihydroisoquinolin-1-one, was found to inhibit the growth of a PBEF1 over expressing glioma derived cell line U87 as well. Conclusions: Thus, a novel inhibitor has been identified through a structure based drug discovery approach and is further supported by experimental evidence

    A three-dimensional model of the human blood-brain barrier to analyse the transport of nanoparticles and astrocyte/endothelial interactions [version 1; referees: 2 approved with reservations]

    Get PDF
    The aim of this study was to develop a three-dimensional (3D) model of the human blood-brain barrier in vitro, which mimics the cellular architecture of the CNS and could be used to analyse the delivery of nanoparticles to cells of the CNS. The model includes human astrocytes set in a collagen gel, which is overlaid by a monolayer of human brain endothelium (hCMEC/D3 cell line). The model was characterised by transmission electron microscopy (TEM), immunofluorescence microscopy and flow cytometry. A collagenase digestion method could recover the two cell types separately at 92-96% purity. Astrocytes grown in the gel matrix do not divide and they have reduced expression of aquaporin-4 and the endothelin receptor, type B compared to two-dimensional cultures, but maintain their expression of glial fibrillary acidic protein. The effects of conditioned media from these astrocytes on the barrier phenotype of the endothelium was compared with media from astrocytes grown conventionally on a two-dimensional (2D) substratum. Both induce the expression of tight junction proteins zonula occludens-1 and claudin-5 in hCMEC/D3 cells, but there was no difference between the induced expression levels by the two media. The model has been used to assess the transport of glucose-coated 4nm gold nanoparticles and for leukocyte migration. TEM was used to trace and quantitate the movement of the nanoparticles across the endothelium and into the astrocytes. This blood-brain barrier model is very suitable for assessing delivery of nanoparticles and larger biomolecules to cells of the CNS, following transport across the endothelium

    A three-dimensional model of the human blood-brain barrier to analyse the transport of nanoparticles and astrocyte/endothelial interactions

    Get PDF
    The aim of this study was to develop a three-dimensional (3D) model of the human blood-brain barrier in vitro, which mimics the cellular architecture of the CNS and could be used to analyse the delivery of nanoparticles to cells of the CNS. The model includes human astrocytes set in a collagen gel, which is overlaid by a monolayer of human brain endothelium (hCMEC/D3 cell line). The model was characterised by transmission electron microscopy (TEM), immunofluorescence microscopy and flow cytometry. A collagenase digestion method could recover the two cell types separately at 92-96% purity. Astrocytes grown in the gel matrix do not divide and they have reduced expression of aquaporin-4 and the endothelin receptor, type B compared to two-dimensional cultures, but maintain their expression of glial fibrillary acidic protein. The effects of conditioned media from these astrocytes on the barrier phenotype of the endothelium was compared with media from astrocytes grown conventionally on a two-dimensional (2D) substratum. Both induce the expression of tight junction proteins zonula occludens-1 and claudin-5 in hCMEC/D3 cells, but there was no difference between the induced expression levels by the two media. The model has been used to assess the transport of glucose-coated 4nm gold nanoparticles and for leukocyte migration. TEM was used to trace and quantitate the movement of the nanoparticles across the endothelium and into the astrocytes. This blood-brain barrier model is very suitable for assessing delivery of nanoparticles and larger biomolecules to cells of the CNS, following transport across the endothelium

    Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro

    Get PDF
    The blood-brain barrier prevents the entry of many therapeutic agents into the brain. Various nanocarriers have been developed to help agents to cross this barrier, but they all have limitations, with regard to tissue-selectivity and their ability to cross the endothelium. This study investigated the potential for 4 nm coated gold nanoparticles to act as selective carriers across human brain endothelium and subsequently to enter astrocytes. The transfer rate of glucose-coated gold nanoparticles across primary human brain endothelium was at least three times faster than across non-brain endothelia. Movement of these nanoparticles occurred across the apical and basal plasma membranes via the cytosol with relatively little vesicular or paracellular migration; antibiotics that interfere with vesicular transport did not block migration. The transfer rate was also dependent on the surface coating of the nanoparticle and incubation temperature. Using a novel 3-dimensional co-culture system, which includes primary human astrocytes and a brain endothelial cell line hCMEC/D3, we demonstrated that the glucose-coated nanoparticles traverse the endothelium, move through the extracellular matrix and localize in astrocytes. The movement of the nanoparticles through the matrix was >10 µm/hour and they appeared in the nuclei of the astrocytes in considerable numbers. These nanoparticles have the correct properties for efficient and selective carriers of therapeutic agents across the blood-brain barrier

    Comparison of polypeptides that bind the transferrin receptor for targeting gold nanocarriers

    Get PDF
    The ability to target therapeutic agents to specific tissues is an important element in the development of new disease treatments. The transferrin receptor (TfR) is one potential target for drug delivery, as it expressed on many dividing cells and on brain endothelium, the key cellular component of the blood-brain barrier. The aim of this study was to compare a set of new and previously-described polypeptides for their ability to bind to brain endothelium, and investigate their potential for targeting therapeutic agents to the CNS. Six polypeptides were ranked for their rate of endocytosis by the human brain endothelial cell line hCMEC/D3 and the murine line bEnd.3. One linear polypeptide and two cyclic polypeptides showed high rates of uptake. These peptides were investigated to determine whether serum components, including transferrin itself affected uptake by the endothelium. One of the cyclic peptides was strongly inhibited by transferrin and the other cyclic peptide weakly inhibited. As proof of principle the linear peptide was attached to 2nm glucose coated gold-nanoparticles, and the rate of uptake of the nanoparticles measured in a hydrogel model of the blood-brain barrier. Attachment of the TfR-targeting polypeptide significantly increased the rates of endocytosis by brain endothelium and increased movement of nanoparticles across the cells

    A novel dynamic multicellular co-culture system for studying individual blood-brain barrier cell types in brain diseases and cytotoxicity testing

    Get PDF
    Blood brain barrier (BBB) cells play key roles in the physiology and pathology of the central nervous system (CNS). BBB dysfunction is implicated in many neurodegenerative diseases, including Alzheimer’s disease (AD). The BBB consists of capillary endothelial cells, pericytes encircling the endothelium and surrounding astrocytes extending their processes towards it. Although there have been many attempts to develop in vitro BBB models, the complex interaction between these celltypes makes it extremely difficult to determine their individual contribution to neurotoxicity in vivo. Thus, we developed and optimised an in vitro multicellular co-culture model within the Kirkstall Quasi Vivo System. The main aim was to determine the optimal environment to culture human brain primary endothelial cells, pericytes and astrocytes whilst maintaining cellular communication without formation of a barrier in order to assess the contribution of each cell type to the overall response. As a proof of concept for the present system, the effects of amyloid-beta 25-35 peptide (Aβ25-35), a hall mark of AD, were explored. This multicellular system will be a valuable tool for future studies on the specific roles of individual BBB cell type (while making connection with each other through medium) in CNS disorders as well as in cytotoxicity tests
    corecore