1,769 research outputs found
Rethinking the International Monetary System: an overview
Monetary policy ; International finance
Sustainable CO2 adsorbents prepared by coating chitosan onto mesoporous silicas for large-scale carbon capture technology
In this article, we report a new sustainable synthesis procedure for manufacturing chitosan/silica CO2 adsorbents. Chitosan is a naturally abundant material and contains amine functionality, which is essential for selective CO2 adsorptions. It is, therefore, ideally suited for manufacturing CO2 adsorbents on a large scale. By coating chitosan onto high-surface-area mesoporous silica supports, including commercial fumed silica (an economical and accessible reagent) and synthetic SBA-15 and MCF silicas, we have prepared a new family of CO2 adsorbents, which have been fully characterised with nitrogen adsorption isotherms, thermogravimetric analysis/differential scanning calorimetry, TEM, FTIR spectroscopy and Raman spectroscopy. These adsorbents have achieved a significant CO2 adsorption capacity of up to 0.98 mmol g−1 at ambient conditions (P=1 atm and T=25 °C). The materials can also be fully regenerated/recycled on demand at temperatures as low as 75 °C with a >85 % retention of the adsorption capacity after 4 cycles, which makes them promising candidates for advanced CO2 capture, storage and utilisation technology
Exact solutions for hydrodynamic interactions of two squirming spheres
We provide exact solutions of the Stokes equations for a squirming sphere
close to a no-slip surface, both planar and spherical, and for the interactions
between two squirmers, in three dimensions. These allow the hydrodynamic
interactions of swimming microscopic organisms with confining boundaries, or
each other, to be determined for arbitrary separation and, in particular, in
the close proximity regime where approximate methods based on point singularity
descriptions cease to be valid. We give a detailed description of the circular
motion of an arbitrary squirmer moving parallel to a no-slip spherical boundary
or flat free surface at close separation, finding that the circling generically
has opposite sense at free surfaces and at solid boundaries. While the
asymptotic interaction is symmetric under head-tail reversal of the swimmer, in
the near field microscopic structure can result in significant asymmetry. We
also find the translational velocity towards the surface for a simple model
with only the lowest two squirming modes. By comparing these to asymptotic
approximations of the interaction we find that the transition from near- to
far-field behaviour occurs at a separation of about two swimmer diameters.
These solutions are for the rotational velocity about the wall normal, or
common diameter of two spheres, and the translational speed along that same
direction, and are obtained using the Lorentz reciprocal theorem for Stokes
flows in conjunction with known solutions for the conjugate Stokes drag
problems, the derivations of which are demonstrated here for completeness. The
analogous motions in the perpendicular directions, i.e. parallel to the wall,
currently cannot be calculated exactly since the relevant Stokes drag solutions
needed for the reciprocal theorem are not available.Comment: 27 pages, 7 figure
The Potential Applications of Nanoporous Materials for the Adsorption, Separation, and Catalytic Conversion of Carbon Dioxide
Electron correlations in two-dimensional small quantum dots
We consider circular and elliptic quantum dots with parabolic external
confinement, containing 0 - 22 electrons and with values of r_s in the range 0
< r_s < 3. We perform restricted and unrestricted Hartree-Fock calculations,
and further take into account electron correlations using second-order
perturbation theory. We demonstrate that in many cases correlations
qualitatively change the spin structure of the ground state from that obtained
under Hartree-Fock and spin-density-functional calculations. In some cases the
correlation effects destroy Hund's rule. We also demonstrate that the
correlations destroy static spin-density waves observed in Hartree-Fock and
spin-density-functional calculations.Comment: 11 pages, 9 figures. This replacement contains new content. Results
have been recalculated for dots with zero effective thickness (true 2D). For
6 electrons, results have been compared with configuration interaction
results from the literatur
A note on the effective slip properties for microchannel flows with ultra-hydrophobic surfaces
A type of super-hydrophobic surface consists of a solid plane boundary with
an array of grooves which, due to the effect of surface tension, prevent a
complete wetting of the wall. The effect is greatest when the grooves are
aligned with the flow. The pressure difference between the liquid and the gas
in the grooves causes a curvature of the liquid surface resisted by surface
tension. The effects of this surface deformation are studied in this paper. The
corrections to the effective slip length produced by the curvature are analyzed
theoretically and a comparison with available data and related mathematical
models is presented.Comment: 19 pages, 5 figure
Structure of hard-hypersphere fluids in odd dimensions
The structural properties of single component fluids of hard hyperspheres in
odd space dimensionalities are studied with an analytical approximation
method that generalizes the Rational Function Approximation earlier introduced
in the study of hard-sphere fluids [S. B. Yuste and A. Santos, Phys. Rev. A
{\bf 43}, 5418 (1991)]. The theory makes use of the exact form of the radial
distribution function to first order in density and extends it to finite
density by assuming a rational form for a function defined in Laplace space,
the coefficients being determined by simple physical requirements. Fourier
transform in terms of reverse Bessel polynomials constitute the mathematical
framework of this approximation, from which an analytical expression for the
static structure factor is obtained. In its most elementary form, the method
recovers the solution of the Percus-Yevick closure to the Ornstein-Zernike
equation for hyperspheres at odd dimension. The present formalism allows one to
go beyond by yielding solutions with thermodynamic consistency between the
virial and compressibility routes to any desired equation of state. Excellent
agreement with available computer simulation data at and is
obtained. As a byproduct of this study, an exact and explicit polynomial
expression for the intersection volume of two identical hyperspheres in
arbitrary odd dimensions is given.Comment: 18 pages, 7 figures; v2: new references added plus minor changes; to
be published in PR
Lineage dynamics of murine pancreatic development at single-cell resolution.
Organogenesis requires the complex interactions of multiple cell lineages that coordinate their expansion, differentiation, and maturation over time. Here, we profile the cell types within the epithelial and mesenchymal compartments of the murine pancreas across developmental time using a combination of single-cell RNA sequencing, immunofluorescence, in situ hybridization, and genetic lineage tracing. We identify previously underappreciated cellular heterogeneity of the developing mesenchyme and reconstruct potential lineage relationships among the pancreatic mesothelium and mesenchymal cell types. Within the epithelium, we find a previously undescribed endocrine progenitor population, as well as an analogous population in both human fetal tissue and human embryonic stem cells differentiating toward a pancreatic beta cell fate. Further, we identify candidate transcriptional regulators along the differentiation trajectory of this population toward the alpha or beta cell lineages. This work establishes a roadmap of pancreatic development and demonstrates the broad utility of this approach for understanding lineage dynamics in developing organs
Cognitive demands of face monitoring: Evidence for visuospatial overload
Young children perform difficult communication tasks better face to face than when they cannot see one another (e.g., Doherty-Sneddon & Kent, 1996). However, in recent studies, it was found that children aged 6 and 10 years, describing abstract shapes, showed evidence of face-to-face interference rather than facilitation. For some communication tasks, access to visual signals (such as facial expression and eye gaze) may hinder rather than help children’s communication. In new research we have pursued this interference effect. Five studies are described with adults and 10- and 6-year-old participants. It was found that looking at a face interfered with children’s abilities to listen to descriptions of abstract shapes. Children also performed visuospatial memory tasks worse when they looked at someone’s face prior to responding than when they looked at a visuospatial pattern or at the floor. It was concluded that performance on certain tasks was hindered by monitoring another person’s face. It is suggested that processing of visual communication signals shares certain processing resources with the processing of other visuospatial information
- …
