1,592 research outputs found

    Hiding its age: the case for a younger bulge

    Full text link
    The determination of the age of the bulge has led to two contradictory results. On the one side, the color-magnitude diagrams in different bulge fields seem to indicate a uniformly old (>>10 Gyr) population. On the other side, individual ages derived from dwarfs observed through microlensing events seem to indicate a large spread, from ∼\sim 2 to ∼\sim 13 Gyr. Because the bulge is now recognised as being mainly a boxy peanut-shaped bar, it is suggested that disk stars are one of its main constituents, and therefore also stars with ages significantly younger than 10 Gyr. Other arguments as well point to the fact that the bulge cannot be exclusively old, and in particular cannot be a burst population, as it is usually expected if the bulge was the fossil remnant of a merger phase in the early Galaxy. In the present study, we show that given the range of metallicities observed in the bulge, a uniformly old population would be reflected into a significant spread in color at the turn-off which is not observed. Inversely, we demonstrate that the correlation between age and metallicity expected to hold for the inner disk would conspire to form a color-magnitude diagram with a remarkably small spread in color, thus mimicking the color-magnitude diagram of a uniformly old population. If stars younger than 10 Gyr are part of the bulge, as must be the case if the bulge has been mainly formed through dynamical instabilities in the disk, then a very small spread at the turn-off is expected, as seen in the observations.Comment: 11 pages, 11 figures. Accepted for publication in A&

    Some nilpotent H-spaces

    Full text link

    Developments in Random Matrix Theory

    Full text link
    In this preface to the Journal of Physics A, Special Edition on Random Matrix Theory, we give a review of the main historical developments of random matrix theory. A short summary of the papers that appear in this special edition is also given.Comment: 22 pages, Late

    Random Matrix Theory and the Fourier Coefficients of Half-Integral Weight Forms

    Full text link
    Conjectured links between the distribution of values taken by the characteristic polynomials of random orthogonal matrices and that for certain families of L-functions at the centre of the critical strip are used to motivate a series of conjectures concerning the value-distribution of the Fourier coefficients of half-integral weight modular forms related to these L-functions. Our conjectures may be viewed as being analogous to the Sato-Tate conjecture for integral weight modular forms. Numerical evidence is presented in support of them.Comment: 28 pages, 8 figure

    Signatures of radial migration in barred galaxies: Azimuthal variations in the metallicity distribution of old stars

    Full text link
    By means of N-body simulations, we show that radial migration in galaxy disks, induced by bar and spiral arms, leads to significant azimuthal variations in the metallicity distribution of old stars at a given distance from the galaxy center. Metals do not show an axisymmetric distribution during phases of strong migration. Azimuthal variations are visible during the whole phase of strong bar phase, and tend to disappear as the effect of radial migration diminishes, together with a reduction in the bar strength. These results suggest that the presence of inhomogeneities in the metallicity distribution of old stars in a galaxy disk can be a probe of ongoing strong migration. Such signatures may be detected in the Milky Way by Gaia (and complementary spectroscopic data), as well as in external galaxies, by IFU surveys like CALIFA and ATLAS3D. Mixing - defined as the tendency toward a homogeneous, azimuthally symmetric, stellar distribution in the disk - and migration turns out to be two distinct processes, the effects of mixing starting to be visible when strong migration is over.Comment: 8 pages, 10 figures, accepted for publication on Astronomy and Astrophysic

    Autocorrelation of Random Matrix Polynomials

    Full text link
    We calculate the autocorrelation functions (or shifted moments) of the characteristic polynomials of matrices drawn uniformly with respect to Haar measure from the groups U(N), O(2N) and USp(2N). In each case the result can be expressed in three equivalent forms: as a determinant sum (and hence in terms of symmetric polynomials), as a combinatorial sum, and as a multiple contour integral. These formulae are analogous to those previously obtained for the Gaussian ensembles of Random Matrix Theory, but in this case are identities for any size of matrix, rather than large-matrix asymptotic approximations. They also mirror exactly autocorrelation formulae conjectured to hold for L-functions in a companion paper. This then provides further evidence in support of the connection between Random Matrix Theory and the theory of L-functions

    The stellar metallicity gradients in galaxy discs in a cosmological scenario

    Get PDF
    Indexación: Web of ScienceContext. The stellar metallicity gradients of disc galaxies provide information on disc assembly, star formation processes, and chemical evolution. They also might store information on dynamical processes that could affect the distribution of chemical elements in the gas phase and the stellar components. Understanding their joint effects within a hierarchical clustering scenario is of paramount importance. Aims. We studied the stellar metallicity gradients of simulated discs in a cosmological simulation. We explored the dependence of the stellar metallicity gradients on stellar age and on the size and mass of the stellar discs. Methods. We used a catalogue of galaxies with disc components selected from a cosmological hydrodynamical simulation performed including a physically motivated supernova feedback and chemical evolution. Disc components were defined based on angular momentum and binding energy criteria. The metallicity profiles were estimated for stars with different ages. We confront our numerical findings with results from the Calar Alto Legacy Integral Field Area (CALIFA) Survey. Results. The simulated stellar discs are found to have metallicity profiles with slopes in global agreement with observations. Low stellar mass galaxies tend to have a larger variety of metallicity slopes. When normalized by the half-mass radius, the stellar metallicity gradients do not show any dependence and the dispersion increases significantly, regardless of the galaxy mass. Galaxies with stellar masses of around 10(10) M-circle dot show steeper negative metallicity gradients. The stellar metallicity gradients correlate with the half-mass radius. However, the correlation signal is not present when they are normalized by the half-mass radius. Stellar discs with positive age gradients are detected to have negative and positive metallicity gradients, depending on the relative importance of recent star formation activity in the central regions. Conclusions. Our results suggest that inside-out formation is the main process responsible for the metallicity and age profiles. The large dispersions in the metallicity gradients as a function of stellar mass could be ascribed to the effects of dynamical processes such as mergers, interactions and/or migration as well as those regulating the conversion of gas into stars. The fingerprints of the inside-out formation seem better preserved by the stellar metallicity gradients as a function of the half-mass radius.http://www.aanda.org/articles/aa/abs/2016/08/aa28188-16/aa28188-16.htm
    • …
    corecore