446 research outputs found
Influence of seating styles on head and pelvic vertical movement symmetry in horses ridden at trot
Detailed knowledge of how a rider’s seating style and riding on a circle influences the movement symmetry of the horse’s head and pelvis may aid rider and trainer in an early recognition of low grade lameness. Such knowledge is also important during both subjective and objective lameness evaluations in the ridden horse in a clinical setting. In this study, inertial sensors were used to assess how different rider seating styles may influence head and pelvic movement symmetry in horses trotting in a straight line and on the circle in both directions. A total of 26 horses were subjected to 15 different conditions at trot: three unridden conditions and 12 ridden conditions where the rider performed three different seating styles (rising trot, sitting trot and two point seat). Rising trot induced systematic changes in movement symmetry of the horses. The most prominent effect was decreased pelvic rise that occurred as the rider was actively rising up in the stirrups, thus creating a downward momentum counteracting the horses push off. This mimics a push off lameness in the hindlimb that is in stance when the rider sits down in the saddle during the rising trot. On the circle, the asymmetries induced by rising trot on the correct diagonal counteracted the circle induced asymmetries, rendering the horse more symmetrical. This finding offers an explanation to the equestrian tradition of rising on the ‘correct diagonal.’ In horses with small pre-existing movement asymmetries, the asymmetry induced by rising trot, as well as the circular track, attenuated or reduced the horse’s baseline asymmetry, depending on the sitting diagonal and direction on the circle. A push off hindlimb lameness would be expected to increase when the rider sits during the lame hindlimb stance whereas an impact hindlimb lameness would be expected to decrease. These findings suggest that the rising trot may be useful for identifying the type of lameness during subjective lameness assessment of hindlimb lameness. This theory needs to be studied further in clinically lame horses
Effect of meloxicam treatment on movement asymmetry in riding horses in training
Quantitative gait analysis has revealed that a large proportion of horses in training, perceived as free from lameness by their owners, show movement asymmetries of equal magnitude to horses with mild clinical lameness. Whether these movement asymmetries are related to orthopaedic pain and/or pathology has yet to be further investigated. Therefore, the objective of this study was to determine whether movement asymmetries in riding horses in training are affected by anti-inflammatory treatment with meloxicam. In a crossover design, horses were treated with meloxicam or placebo for four days respectively, with a 14–16 day washout period between treatments. Objective movement analysis utilising body mounted accelerometers was performed on a hard and a soft surface before and on day four of each treatment. A trial mean was calculated for the differences between the two vertical displacement minima and maxima of head (HDmin, HDmax) and pelvis (PDmin, PDmax) per stride. Horses (n = 66) with trial mean asymmetries greater than 6 mm for HDmin or HDmax, or more than 3 mm for PDmin or PDmax, at baseline were included. The difference before and after each treatment in the measured movement asymmetry was assessed with linear mixed models. Treatment with meloxicam did not significantly affect the movement asymmetry in any of the models applied (all p>0.30). These results raise new questions: are the movement asymmetries in riding horses in training simply expressions of biological variation or are they related to pain/dysfunction that is non-responsive to meloxicam treatment
Time trends of polycyclic aromatic hydrocarbon exposure in New York city from 2001 to 2012: Assessed by repeat air and urine samples
Background:
Exposure to air pollutants including polycyclic aromatic hydrocarbons (PAH), and specifically pyrene from combustion of fuel oil, coal, traffic and indoor sources, has been associated with adverse respiratory health outcomes. However, time trends of airborne PAH and metabolite levels detected via repeat measures over time have not yet been characterized. We hypothesized that PAH levels, measured repeatedly from residential indoor and outdoor monitors, and children׳s urinary concentrations of PAH metabolites, would decrease following policy interventions to reduce traffic-related air pollution.
Methods:
Indoor PAH (particle- and gas-phase) were collected for two weeks prenatally (n=98), at age 5/6 years (n=397) and age 9/10 years (n=198) since 2001 and at all three age-points (n=27). Other traffic-related air pollutants (black carbon and PM2.5) were monitored indoors simultaneous with PAH monitoring at ages 5/6 (n=403) and 9/10 (n=257) between 2005 and 2012. One third of the homes were selected across seasons for outdoor PAH, BC and PM2.5 sampling. Using the same sampling method, ambient PAH, BC and PM2.5 also were monitored every two weeks at a central site between 2007 and 2012. PAH were analyzed as semivolatile PAH (e.g., pyrene; MW 178–206) (∑8PAHsemivolatile: Including pyrene (PYR), phenanthrene (PHEN), 1-methylphenanthrene (1-MEPH), 2-methylphenanthrene (2-MEPH), 3-methylphenanthrene (3-MEPH), 9-methylphenanthrene (9-MEPH), 1,7-dimethylphenanthrene (1,7-DMEPH), and 3,6-dimethylphenanthrene (3,6-DMEPH)) and the sum of eight nonvolatile PAH (∑8PAHnonvolatile: Including benzo[a]anthracene (BaA), chrysene/iso-chrysene (Chry), benzo[b]fluoranthene (BbFA), benzo[k]fluoranthene (BkFA), benzo[a]pyrene (BaP), indeno[1,2,3-c,d]pyrene (IP), dibenzo[a,h]anthracene (DahA), and benzo[g,h,i]perylene (BghiP); MW 228–278). A spot urine sample was collected from children at child ages 3, 5, 7 and 9 between 2001 and 2012 and analyzed for 10 PAH metabolites.
Results:
Modest declines were detected in indoor BC and PM2.5 levels between 2005 and 2012 (Annual percent change [APC]=−2.08% [p=0.010] and −2.18% [p=0.059] for BC and PM2.5, respectively), while a trend of increasing pyrene levels was observed in indoor and outdoor samples, and at the central site during the comparable time periods (APC=4.81%, 3.77% and 7.90%, respectively; p<0.05 for all). No significant time trend was observed in indoor ∑8PAHnonvolatile levels between 2005 and 2012; however, significant opposite trends were detected when analyzed seasonally (APC=−8.06% [p<0.01], 3.87% [p<0.05] for nonheating and heating season, respectively). Similarly, heating season also affected the annual trends (2005–2012) of other air pollutants: the decreasing BC trend (in indoor/outdoor air) was observed only in the nonheating season, consistent with dominating traffic sources that decreased with time; the increasing pyrene trend was more apparent in the heating season. Outdoor PM2.5 levels persistently decreased over time across the seasons. With the analyses of data collected over a longer period of time (2001–2012), a decreasing trend was observed in pyrene (APC=−2.76%; p<0.01), mostly driven by measures from the nonheating season (APC=−3.54%; p<0.01). In contrast, levels of pyrene and naphthalene metabolites, 1-hydroxypyrene and 2-naphthol, increased from 2001 to 2012 (APC=6.29% and 7.90% for 1-hydroxypyrene and 2-naphthol, respectively; p<0.01 for both).
Conclusions:
Multiple NYC legislative regulations targeting traffic-related air pollution may have led to decreases in ∑8PAHnonvolatile and BC, especially in the nonheating season. Despite the overall decrease in pyrene over the 2001–2012 periods, a rise in pyrene levels in recent years (2005–2012), that was particularly evident for measures collected during the heating season, and 2-naphthol, indicates the contribution of heating oil combustion and other indoor sources to airborne pyrene and urinary 2-naphthol
Scientific Opinion on Dietary Reference Values for iron
Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies derived Dietary Reference Values (DRVs) for iron. These include Average Requirement (AR) and Population Reference Intake (PRI). For adults, whole-body iron losses were modelled using data from US adults. Predicted absorption values, at a serum ferritin concentration of 30 \ub5g/L, of 16 % for men and 18 % for women were used to convert physiological requirements to dietary iron intakes. In men, median whole-body iron losses are 0.95 mg/day, and the AR is 6 mg/day. The PRI, calculated as the dietary requirement at the 97.5th percentile, is 11 mg/day. For postmenopausal women, the same DRVs as for men are proposed. In premenopausal women, additional iron is lost through menstruation but, because losses are highly skewed, the Panel set a PRI of 16 mg/day to cover requirements of 95 % of the population. In infants and children, requirements were calculated factorially, taking into consideration the needs for growth, replacement of losses and percentage iron absorption from the diet (10 % up to 11 years and 16 % thereafter). PRIs were estimated using a coefficient of variation of 20 %. They are 11 mg/day in infants (7\u201311 months), 7 mg/day in children aged 1\u20136 years and 11 mg/day in children aged 7\u201311 years and boys aged 12\u201317 years. For girls aged 12\u201317 years, the PRI of 13 mg/day is the midpoint of the calculated dietary requirement of 97.5 % of girls and the PRI for premenopausal women; this approach allows for the large uncertainties in the rate and timing of pubertal growth and menarche. For pregnant and lactating women, for whom it was assumed that iron stores and enhanced absorption provide sufficient additional iron, DRVs are the same as for premenopausal women
General scientific guidance for stakeholders on health claim applications
The European Food Safety Authority (EFSA) asked the Panel on Dietetic Products Nutrition and Allergies (NDA) to update the General guidance for stakeholders on the evaluation of Article 13.1, 13.5 and 14 health claims published in March 2011. Since then, the NDA Panel has completed the evaluation of Article 13.1 claims except for claims put on hold by the European Commission, and has evaluated additional health claim applications submitted pursuant to Articles 13.5, 14 and also 19. In addition, comments received from stakeholders indicate that general issues that are common to all health claims need to be further clarified and addressed. This guidance document aims to explain the general scientific principles applied by the NDA Panel for the evaluation of all health claims and outlines a series of steps for the compilation of applications. The general guidance document represents the views of the NDA Panel based on the experience gained to date with the evaluation of health claims, and it may be further updated, as appropriate, when additional issues are addressed
Scientific Opinion on Dietary Reference Values for copper
Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) derived Dietary Reference Values (DRVs) for copper. Owing to the absence of appropriate biomarkers of copper status and the limitations of available balance studies, the Panel was unable to derive Average Requirements (ARs) and Population Reference Intakes (PRIs). Hence, Adequate Intakes (AIs) were defined based on mean observed intakes in several European Union (EU) countries, given that there is no evidence of overt copper deficiency in the European population. Data from balance studies were used as supportive evidence. For adults, AIs of 1.6 mg/day for men and 1.3 mg/day for women are proposed. For children, AIs are 0.7 mg/day for children aged 1 to < 3 years, 1 mg/day for children aged 3 to < 10 years, and 1.3 and 1.1 mg/day for boys and girls aged 10 to < 18 years, respectively. For infants aged 7–11 months, based on mean observed intakes in four EU countries, an AI of 0.4 mg/day is proposed, which is supported by upwards extrapolation of estimated copper intake in exclusively breast-fed infants. For pregnant women, an increment of 0.2 mg/day is estimated to cover the amount of copper deposited in the fetus and the placenta over the course of pregnancy and in anticipation of the needs for lactation, and for lactating women the same increment is estimated to cover the amount of copper secreted with breast milk. Thus, for pregnant and lactating women, the Panel derived an AI of 1.5 mg/day
Polybrominated Diphenyl Ether (PBDE) and Poly- and Perfluoroalkyl Substance (PFAS) Exposures During Pregnancy and Maternal Depression
Background: Experimental studies in rodents suggest that polybrominated diphenyl ethers (PBDEs) and poly- and perfluoroalkyl substances (PFAS) may contribute to depressive symptoms. Few studies have examined the impact of these chemicals on depression in adults. Objective: To examine the associations between serum PBDE and PFAS concentrations during pregnancy and repeated measures of depressive symptoms in women assessed from pregnancy to 8 years postpartum. Methods: This study was based on 377 women from the Health Outcomes and Measures of the Environment Study, a birth cohort in Cincinnati, OH (USA). PBDEs (BDE-28, -47, -99, -100, -153, and ∑PBDEs) and PFAS (perfluorooctanoate [PFOA], perfluorooctane sulfonate [PFOS], perfluorohexane sulfonate [PFHxS], perfluorononanoate [PFNA]) were quantified in maternal serum at 16 ± 3 weeks gestation. Depressive symptoms were measured using the Beck Depression Inventory-II (BDI-II) at ~20 weeks gestation and up to seven times during postpartum visits (4 weeks, 1, 2, 3, 4, 5, and 8 years). We used linear mixed models to estimate covariate-adjusted associations between chemical concentrations and repeated measures of BDI-II. Multinomial logistic regression models were used to estimate the relative risk ratios of having a medium or high depression trajectory. Results: We found that a 10-fold increase in BDE-28 at 16 ± 3 weeks gestation was associated with significantly increased BDI-II scores (β = 2.5 points, 95% confidence interval [CI] 0.8, 4.2) from pregnancy to 8 years postpartum. Significant positive associations were also observed with BDE-47, -100, -153, and ∑PBDEs. A 10-fold increase in ∑PBDEs was associated with a 4.6-fold increased risk (95% CI 1.8, 11.8) of a high trajectory for BDI-II compared to a low trajectory. We observed no significant associations between PFAS and BDI-II scores
- …