20,408 research outputs found

    Identification of an Alternative Exon in a GABA Receptor Gene

    Get PDF
    The central dogma of biology states that DNA is transcribed into mRNA, which is then translated into proteins. In order for translation to occur, pre-mRNAs first must be processed. In pre-mRNA processing, parts of the nucleotide sequence called introns are spliced out from the transcript, so the final mRNA is made up entirely of exons. In alternative splicing, an exon is spliced out of the pre-mRNA transcript much like an intron. An mRNA transcript produced as a result of alternative splicing could produce a different protein than the mRNA without alternative splicing. Alternative splicing of an mRNA transcript could also result in a premature termination codon (PTC) within the mRNA sequence. This premature termination codon causes translation to stop before the full transcript has been translated, resulting in a truncated protein. Nonsense Mediated Decay (NMD) functions by degrading mRNA transcripts containing a PTC. NMD occurs during translation by an intricate series of protein-protein and protein-mRNA interactions that detect a PTC and result in the cleavage of PTC-containing mRNAs. We discovered an alternative exon in a zebrafish GABA receptor gene that leads to a PTC when excluded from the final mRNA and investigated the role of NMD in degrading the PTC-containing transcript

    Two-dimensional frustrated spin systems in high magnetic fields

    Full text link
    We discuss our numerical results on the properties of the S = 1/2 frustrated J1-J2 Heisenberg model on a square lattice as a function of temperature and frustration angle phi = atan(J2/J1) in an applied magnetic field. We cover the full phase diagram of the model in the range -pi <= phi <= pi. The discussion includes the parameter dependence of the saturation field itself, and addresses the instabilities associated with it. We also discuss the magnetocaloric effect of the model and show how it can be used to uniquely determine the effective interaction constants of the compounds which were investigated experimentally.Comment: 4 pages, 5 figures, proceedings of RHMF 200

    Deciphering the role of Epstein-Barr virus in the pathogenesis of T and NK cell lymphoproliferations

    Get PDF
    Epstein-Barr virus (EBV) is a highly successful herpesvirus, colonizing more than 90% of the adult human population worldwide, although it is also associated with various malignant diseases. Primary infection is usually clinically silent, and subsequent establishment of latency in the memory B lymphocyte compartment allows persistence of the virus in the infected host for life. EBV is so markedly B-lymphotropic when exposed to human lymphocytes in vitro that the association of EBV with rare but distinct types of T and NK cell lymphoproliferations was quite unexpected. Whilst relatively rare, these EBV-associated T and NK lymphoproliferations can be therapeutically challenging and prognosis for the majority of patients is dismal. In this review, we summarize the current knowledge on the role of EBV in the pathogenesis of these tumours, and the implications for treatment. \ud \u

    Time's Barbed Arrow: Irreversibility, Crypticity, and Stored Information

    Full text link
    We show why the amount of information communicated between the past and future--the excess entropy--is not in general the amount of information stored in the present--the statistical complexity. This is a puzzle, and a long-standing one, since the latter is what is required for optimal prediction, but the former describes observed behavior. We layout a classification scheme for dynamical systems and stochastic processes that determines when these two quantities are the same or different. We do this by developing closed-form expressions for the excess entropy in terms of optimal causal predictors and retrodictors--the epsilon-machines of computational mechanics. A process's causal irreversibility and crypticity are key determining properties.Comment: 4 pages, 2 figure

    Degenerate Quantum Codes for Pauli Channels

    Get PDF
    A striking feature of quantum error correcting codes is that they can sometimes be used to correct more errors than they can uniquely identify. Such degenerate codes have long been known, but have remained poorly understood. We provide a heuristic for designing degenerate quantum codes for high noise rates, which is applied to generate codes that can be used to communicate over almost any Pauli channel at rates that are impossible for a nondegenerate code. The gap between nondegenerate and degenerate code performance is quite large, in contrast to the tiny magnitude of the only previous demonstration of this effect. We also identify a channel for which none of our codes outperform the best nondegenerate code and show that it is nevertheless quite unlike any channel for which nondegenerate codes are known to be optimal.Comment: Introduction changed to give more motivation and background. Figure 1 replace

    Near-Extreme Black Holes and the Universal Relaxation Bound

    Full text link
    A fundamental bound on the relaxation time \tau of a perturbed thermodynamical system has recently been derived, \tau \geq \hbar/\pi T, where TT is the system's temperature. We demonstrate analytically that black holes saturate this bound in the extremal limit and for large values of the azimuthal number m of the perturbation field.Comment: 2 Pages. Submitted to PRD on 5/12/200

    Stress antagonizes morphine-induced analgesia in rats

    Get PDF
    Exposure to restraint stress resulted in antagonism of the analgesic effect of administered morphine in adult male rats. This antagonism of morphine-induced analgesia by restraint stress was not affected by adrenalectomy one day prior to testing, suggesting that stress-induced secretion of corticosteroids is not critical to this antagonism. In addition, parenteral administration of exogenous adrenocorticotropin (ACTH) mimicked the effect of stress in antagonizing morphine's analgesic efficacy. The hypothesis that ACTH is an endogenous opiate antagonist involved in modulating pain sensitivity is supported

    Thermodynamic time asymmetry in nonequilibrium fluctuations

    Get PDF
    We here present the complete analysis of experiments on driven Brownian motion and electric noise in a RCRC circuit, showing that thermodynamic entropy production can be related to the breaking of time-reversal symmetry in the statistical description of these nonequilibrium systems. The symmetry breaking can be expressed in terms of dynamical entropies per unit time, one for the forward process and the other for the time-reversed process. These entropies per unit time characterize dynamical randomness, i.e., temporal disorder, in time series of the nonequilibrium fluctuations. Their difference gives the well-known thermodynamic entropy production, which thus finds its origin in the time asymmetry of dynamical randomness, alias temporal disorder, in systems driven out of equilibrium.Comment: to be published in : Journal of Statistical Mechanics: theory and experimen

    Lossless quantum data compression and variable-length coding

    Full text link
    In order to compress quantum messages without loss of information it is necessary to allow the length of the encoded messages to vary. We develop a general framework for variable-length quantum messages in close analogy to the classical case and show that lossless compression is only possible if the message to be compressed is known to the sender. The lossless compression of an ensemble of messages is bounded from below by its von-Neumann entropy. We show that it is possible to reduce the number of qbits passing through a quantum channel even below the von-Neumann entropy by adding a classical side-channel. We give an explicit communication protocol that realizes lossless and instantaneous quantum data compression and apply it to a simple example. This protocol can be used for both online quantum communication and storage of quantum data.Comment: 16 pages, 5 figure
    corecore