2,847 research outputs found

    Interplay between multiple scattering and optical nonlinearity in liquid crystals

    Get PDF
    We discuss the role played by time-dependent scattering on light propagation in liquid crystals. In the linear regime, the effects of the molecular disorder accumulate in propagation, yielding a monotonic decrease in the beam spatial coherence. In the nonlinear case, despite the disorder-imposed Brownian-like motion to the self-guided waves, self-focusing increases the spatial coherence of the beam by inducing spatial localization. Eventually, a strong enhancement in the beam oscillations occurs when power is strong enough to induce self-steering, i.e. in the non-perturbative regime.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Asymptotics of decreasing solutions of coupled p-Laplacian systems in the framework of regular variation

    Get PDF

    Scattering lengths and universality in superdiffusive L\'evy materials

    Full text link
    We study the effects of scattering lengths on L\'evy walks in quenched one-dimensional random and fractal quasi-lattices, with scatterers spaced according to a long-tailed distribution. By analyzing the scaling properties of the random-walk probability distribution, we show that the effect of the varying scattering length can be reabsorbed in the multiplicative coefficient of the scaling length. This leads to a superscaling behavior, where the dynamical exponents and also the scaling functions do not depend on the value of the scattering length. Within the scaling framework, we obtain an exact expression for the multiplicative coefficient as a function of the scattering length both in the annealed and in the quenched random and fractal cases. Our analytic results are compared with numerical simulations, with excellent agreement, and are supposed to hold also in higher dimensionsComment: 6 pages, 8 figure
    • …
    corecore