
Letter Optics Letters 1

Interplay between multiple scattering and optical
nonlinearity in liquid crystals
ALESSANDRO ALBERUCCI1,*, CHANDROTH P. JISHA2, SERENA BOLIS3,4, JEROEN BEECKMAN4, AND
STEFAN NOLTE1,5

1Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Str. 15, 07745 Jena, Germany
2Centro de Física do Porto, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal
3Université libre de Bruxelles, OPERA-Photonics Group, 50 Avenue F.D.Roosevelt CP 194/5 1050 Bruxelles Belgium
4Ghent University, ELIS Department, Technologiepark-Zwijnaarde 15, 9052 Gent, Belgium
5Fraunhofer Institute of Applied Optics and Precision Engineering, Albert-Einstein-Straße 7, 07745 Jena, Germany
*Corresponding author: alessandro.alberucci@gmail.com

Compiled July 27, 2018

We discuss the role played by time-dependent scatter-
ing on light propagation in liquid crystals. In the lin-
ear regime, the effects of the molecular disorder accu-
mulate in propagation, yielding a monotonic decrease
in the beam spatial coherence. In the nonlinear case,
despite the disorder-imposed Brownian-like motion to
the self-guided waves, self-focusing increases the spa-
tial coherence of the beam by inducing spatial local-
ization. Eventually, a strong enhancement in the beam
oscillations occurs when power is strong enough to in-
duce self-steering, i.e., in the non-perturbative regime.
© 2018 Optical Society of America
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The liquid crystalline phases feature unique optical prop-
erties, stemming from their hybrid nature between solids and
liquids [1]. Liquid crystals (LCs) behave in general like inhomo-
geneous anisotropic materials with a locally varying optical axis,
with important repercussions in photonics [2–4]. Between the
numerous LC phases, the most investigated one is the nematic
LC (NLC), featuring the absence of any positional order on the
long range. Due to their fluid-like nature, NLC molecules are
highly mobile, thus they undergo strong reorientation when
subject to external electric fields. In the optical domain, field-
driven reorientation induces a very strong and nonlocal Kerr
effect [5], yielding self-phase modulation [6], self-focusing [7]
and, eventually, formation of self-trapped beams [8].
Nonetheless, a drawback comes from the high mobility of NLC
molecules. With respect to solids, the lower spatial correlation in
molecular position implies more time-dependent disorder. Due
to the relatively stronger intermolecular interaction, the optical
scattering in NLC is much higher (approximately six orders of
magnitude) than in isotropic fluids [1]. As a matter of fact, NLC
are an ideal benchmark for the investigation of light propaga-
tion in the multiple scattering regime, including light diffusion

[9, 10], weak localization [11] and random lasing [12].
In this Letter we investigate the interplay between dynamic scat-
tering and light self-trapping in NLC. We model the molecular
fluctuations with a Langevin force in the reorientation equa-
tion, the latter being solved in time together with the beam
evolution. Our model accounts both for self-steering and longi-
tudinal nonlocality. In the linear regime we observe the growth
in propagation of a speckle field. When the power is sufficient
for self-trapping, Brownian oscillations are observed, the latter
being strongly enhanced when the light undergoes self-steering
via nonlinear changes in the walk-off angle.
Let us consider a planar cell filled with uniaxial NLC. Hereafter
we will neglect thermal nonlinearity, negligible in undoped NLC
sufficiently far away from the isotropic-to-nematic transition [13].
The thickness along x is Lx=100 µm, whereas on the plane yz the
cell is assumed to be infinitely extended along y and of length
Lz = 1 mm along the propagation direction z. The optical prop-
erties are uniquely defined by the spatial distribution of the op-
tical axis n̂, which corresponds to the average orientation of the
molecules also known as the director, and by the two eigenvalues
ε⊥ and ε‖ of the dielectric tensor ε. The anchoring conditions
are such that, in the absence of any external stimulus, the optical
axis lies on the plane yz, forming an angle θ0 with respect to ẑ.
Hereafter we will consider only y-polarized input beam, corre-
sponding to extraordinary wave in the NLC. In the linear regime
(i.e., small input powers), the extraordinary wave propagates

in the medium subject to a spatial walk-off δ = arctan
(

εyz
εzz

)
,

a refractive index ne =

√(
εyy −

ε2
yz

εzz

)/
ε0 and a non-unitary

diffraction coefficient along y, Dy = n2
e

εzz
[14]. The optical torque

is proportional to the optical anisotropy εa = ε‖ − ε⊥ and ro-
tates the NLC molecules only in the plane yz. Thus, the angle
θ = ∠(n̂k̂) completely describes the system. The effects of the op-
tical torque are accounted for by introducing ψ = θ − θ0, where
ψ is the optical perturbation. In the nonlinear case, two differ-
ent regimes are observed according to the ratio r =

ψ
θ . In the

perturbative case r is small, and the optically-induced rotation
yields only a self-focusing effect, eventually generating spatial
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solitons. In the non-perturbative case r is no more negligibly
small: a self-steering effect due to the changes in the walk-off
angle arises [14], the latter being due to the power-dependent
changes in θb(z), where θb = max(θ) for a fixed z. Using a
(1+1)D model, the magnetic field Hx = Aeik0ne(θb)z propagates
under the action of a photonic potential ∆n2

e = n2
e (θ)− n2

e (θb)
and a walk-off angle δ(θb) = δb according to [14, 15]

2ik0ne(θb)

(
∂A
∂z

+ tan δb
∂A
∂y

)
+ Dy

∂2 A
∂y2 + k2

0∆n2
e (θ)A = 0.

(1)

ν
∂ψ

∂t
= K∇2

yzψ−
(

π

Lx

)2
ψ

+
ε0εa

4
sin [2 (θ0 + ψ− δb)] |Et|2 + η(y, z, t), (2)

where k0, ν, and K are the vacuum wave number, the NLC viscos-
ity, and the single elastic constant, respectively. Hereafter we will
use physical parameters corresponding to the NLC E7. The trans-
verse component Et = − Z0

ne(θb) cos(δb)
Hx t̂ is the principal compo-

nent of the electric field, directed along t̂ = cos (δb) ŷ− sin (δb) ẑ.
Equation (1) premises a quasi-stationary regime for the light, that
is, the optical field varies on much shorter time scales than the
macroscopic perturbation ψ governed by Eq. (2). As in the stan-
dard Langevin equation, the term η(y, z, t) is the spatio-temporal
thermal noise accounting for the fast microscopic motion. The
stochastic term η is a white Gaussian stochastic process both in
space and in time, that is, 〈η(r, t)η(r′, t′)〉 = η0δ(r− r′, t− t′).

Following the approach described in the De Gennes’s book

Fig. 1. Thermal fluctuations in a 200 µm×400 µm planar cell
without illumination. (a) A typical realization for ψ. (b) Tem-
poral correlation between the cell center and points distant
0, 5, 10, 20, 50 µm along y, from top to bottom. (c-d) Spatial
correlations along (c) y and (d) z. The correlations are com-
puted from a realization lasting 600 s.

[1], in Ref. [16] the influence of scattering on light propagation
has been accounted for by using the free energy of NLC plus
the equipartition theorem. Here a different approach is used.
We directly add the stochastic force η to Eq. (2) [15, 17]: due
to the strong intermolecular forces, the noise becomes colored,
both in space and time. In this way, the longitudinal and trans-
verse correlations in the noise pattern are properly accounted for.
Our model does not account for scattering from extraordinary

to ordinary and wide angle scattering (both small due to the
momentum conservation), like back-scattering [18]. These two
contributions act like an effective loss in the NLC [14, 16].
The first step is to investigate the thermal fluctuations without
optical field, i.e., for Et = 0. A snapshot is shown in Fig. 1(a), for
a cell of sizes 200 and 400 µm along y and z, respectively. The
average size of equally-orientated domains is dictated by the
nonlocal response of the material [15]. An important point is to
set the numerical parameters for an accurate modelling of the
macroscopic fluctuations in ψ. For this purpose, we compute the
temporal and spatial correlation from a solution of Eq. (2) of du-
ration 600 s. Figure 1(b) shows the temporal correlation between
the cell center and four spatial points. The temporal correlation
decreases with the reciprocal distance. With respect to the tem-
poral delay ∆t, the behavior at very short distances is fixed by
the temporal step used in the numerical simulations due to the
vanishing response time for local perturbations. Despite this, for
longer distances the temporal correlation does not depend on
the numerical step. In the presence of a random potential, the
optical propagation is mainly affected by the spatially extended
perturbations [16]. Finally, the spatial correlation is isotropic
[Fig. 1(c-d)], with an average size of 20 µm for each grain.
We now consider the propagation of low-power light beams

Fig. 2. Propagation of a Gaussian beam of waist 4 µm in the
linear regime. (a) Normalized average intensity versus y at
different distances z. Average is performed over 10 s. (b-d)
Instantaneous intensity distribution calculated in z = 1 mm
versus the transverse coordinate y for (b) σψ = 0.16◦, (c) 0.32◦

and (d) 0.63◦. The white solid line is the intensity for η0 = 0.

(i.e., negligible reorientational nonlinearity) in the presence of
director fluctuations. Hereafter, a wavelength of 1064 nm will
be considered. Equation (2) is solved using a first-order Runge-
Kutta method with a temporal step of 1 ms. The Langevin
term η is updated at each temporal step. The reorientational
equation is solved on a numerical grid with transverse and
longitudinal steps equal to ∆y = 0.5 µm and ∆z = 2 µm, re-
spectively (the longitudinal step used to solve Eq. (1) is 20 times
smaller). The solution is saved every 10 ms. The initial coher-
ence of the beam monotonically fades out as light propagates
inside the NLC [19], see Fig. 2(a) where the averaged inten-
sity I = Z0

2n2
e cos δ T

∫ T
0 |A(y, z, t)|2 dt is plotted. Unlike the quasi-

Gaussian profile for η0 = 0, I develops exponential tails due to
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the scattered light. For long enough distances, I tends to e−|x|/L,
i.e., the diffusive regime is achieved [9]. Figure 2(b-d) and Vi-
sualization 1 shows the temporal evolution versus the noise
strength η0, expressed through the physically relevant quantity

σψ (η0) =

√〈
(ψ− 〈ψ〉)2

〉
, where the brackets correspond to a

temporal average. For a fixed propagation distance larger fluc-
tuations (i.e., bigger σψ) lead to the formation of a speckle-like
field with a lower amount of coherence.
Next we consider the light propagation in the presence of a sub-

Fig. 3. Stable solitonic regime: propagation of a Gaussian
beam of waist 4 µm for P = 0.5 mW, turned on at t = 0 s. In-
tensity cross-sections versus y and time in (a,c,e) zs = 0.5 mm
(mid-plane) and in (b,d,f) zs = 1 mm (output facet); solid
white lines correspond to the snapshot at t = 2 s. Fluctuation
levels are (a-b) σψ = 0.16◦, (c-d) 0.32◦ and (e-f) 0.63◦. Average
intensity over 10 s at (g) z = 0.5 mm and (h) z = 1 mm.

stantial amount of reorientational nonlinearity. A self-trapped
beam is formed despite the fluctuations [20, 21]. Figure 3(a-f)
and Visualization 2 report the temporal evolution of the cross-
section of I at the cell mid-plane and at the output facet, for three
different values of σψ. The highly nonlocal response minimizes
the losses due to the scattering events [15] (in real samples, losses
are due to wide-angle scattering and extraordinary-to-ordinary
conversion [18], both neglected here). The localized wave wig-
gles around the unperturbed (η0 = 0) solution, with the flick-
ering motion increasing with η0. The random inhomogeneities
result in diffusive exponential tails in the cross-section of I, see
Fig. 3(g-h). The amplitude of the oscillations increase with the
propagation distance z due to the Brownian motion [15, 22]. At
the same time, for larger σψ the diffusion becomes strong enough
to induce substantial variations into the cross-section of I.
Light behavior qualitatively changes when the power is large

enough to induce self-steering via nonlinear changes in the walk-

Fig. 4. Unstable solitonic regime: propagation of a Gaussian
beam of waist 2 µm for P = 2 mW, turned on at t = 0 s. Inten-
sity cross-sections versus y and time in (a) zs = 0.5 mm (cell
mid-plane) and in (b) zs = 1 mm (output facet). Plots on the
plane yz of (c) the square modulus of the averaged field and of
(d) the average of the intensity. Fluctuation level is σψ = 0.16◦,
whereas temporal averages are computed over 10 s.

off angle [14]. Figure 4 shows the results for P = 2 mW. For
σψ = 0.16◦ the maximum shift reaches ≈ 20 µm. Looking at
the temporal dynamics [Fig. 4(a-b) and Visualization 3], a large
oscillation on the temporal scale of few seconds is superposing
to the Brownian flickering. In Fig. 4(c-d) the square modulus
of the averaged field A = 1

T
∫ T

0 A(y, z, t)dt and the averaged
intensity I are plotted, respectively. The quantity A estimates
the temporal coherence by accounting for the phase [15]. The
temporal coherence decays with z, achieving a fully incoherent
field in z ≈ 500 µm. On the other hand, I is strictly related to
the probability distribution of the field intensity. The temporal
oscillations result in the broadening of the distribution along y,
the lateral spread increasing with z. Physically, the Brownian
motion shifts the beam away from the center of the self-induced
waveguide. In turn, the beam is pushed back towards the equi-
librium position (i.e., the solution for η0 = 0) by a restoring force,
the latter including contributions both from the index gradient
and from the nonlinear changes in the walk-off [23]. The beam
profile instantaneously responds to the perturbed index well,
yielding strong changes in the light-written index distribution.
The beam thus starts to oscillate around the equilibrium position.
Summarizing, thanks to the nonlinear feedback, the microscopic
motion induces a macroscopic motion of the whole beam.
Let us define the beam trajectory as the center of mass ys(z, t) =∫

y|A|2dy/
∫
|A|2dy. Fig. 5(a) shows the standard deviation

σpos =

√〈
(ys(t)− 〈ys〉)2

〉
for stable solitons. The trajectory

spreading increases with z, with a trend more complicated than
in Ref. [22] due to the longitudinal nonlocality. The mean path
〈ys〉, plotted in Fig. 5(b), corresponds to the equilibrium position
for η0 = 0. In the unstable case [Fig. 5(c)], σpos is still increasing
with z, but the temporal average 〈ys〉 differs from the equilib-
rium solution. Nonlocal longitudinal effects provide a strong
feedback mechanism between different planes z = const causing
long-range fluctuations, see Fig. 5(d).
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Fig. 5. (a) Standard deviation of yS versus z when P = 0.5 mW,
for three values of σψ. (b) Mean trajectory (dashed line) and
realizations over 10 s (spanning the red area) when σψ = 0.63.
(c) Beam position versus z for P = 2 mW for different σψ;
the curves are vertically shifted (σψ increases from bottom to
top) to improve the visibility. Solid lines are the average, and
the realizations span the shaded areas. (d) Set of trajectories
versus time for σψ = 0.16. The averaging time is 10 s.

Experimentally, we coupled an optical fiber with a core di-
ameter of 2.9 µm excited at λ = 1064 nm into a planar cell of
thickness 75 µm, filled up with the NLC E7 [16]. The efficiency
for the laser-to-fiber coupling is about 40% (here we report the
power emitted by the laser). The comparison with the simu-
lations must account for the fact that the theoretical power is
3∼5 times lower than actual powers [14]. Fig. 6 summarizes the
behavior in the presence of self-confinement. As predicted, the
beam wiggles in time, regardless of the power. The standard
deviation σpos increases with z, the trend being in good agree-
ment with the simulations (see Fig. 5 and Visualization 2-5). The
larger the input power the stronger the temporal fluctuations
are: a significant increase is observed when self-steering starts
to occur (see the behavior for P = 9.2 mW).
In conclusion, we discussed the interplay between multiple scat-
tering and nonlinear effects in NLCs. We showed that thermal
fluctuations in the molecular director induce a permanent flick-
ering of the self-localized beam. In the presence of self-steering,
the self-focused beam is temporally unstable and oscillates with
amplitudes of several beam widths, as originally reported by
Braun in capillaries [7, 24]. Our results are a starting point to-
wards the improvement of the coherence and of the temporal
stability of spatial solitons in liquid crystals, two detrimental
effects hindering practical applications of these waves.
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