14 research outputs found

    A systematic approach to biomarker discovery; Preamble to "the iSBTc-FDA taskforce on immunotherapy biomarkers"

    Get PDF
    The International Society for the Biological Therapy of Cancer (iSBTc) has initiated in collaboration with the United States Food and Drug Administration (FDA) a programmatic look at innovative avenues for the identification of relevant parameters to assist clinical and basic scientists who study the natural course of host/tumor interactions or their response to immune manipulation. The task force has two primary goals: 1) identify best practices of standardized and validated immune monitoring procedures and assays to promote inter-trial comparisons and 2) develop strategies for the identification of novel biomarkers that may enhance our understating of principles governing human cancer immune biology and, consequently, implement their clinical application. Two working groups were created that will report the developed best practices at an NCI/FDA/iSBTc sponsored workshop tied to the annual meeting of the iSBTc to be held in Washington DC in the Fall of 2009. This foreword provides an overview of the task force and invites feedback from readers that might be incorporated in the discussions and in the final document

    “Adherent” versus Other Isolation Strategies for Expanding Purified, Potent, and Activated Human NK Cells for Cancer Immunotherapy

    No full text
    Natural killer (NK) cells have long been hypothesized to play a central role in the development of new immunotherapies to combat a variety of cancers due to their intrinsic ability to lyse tumor cells. For the past several decades, various isolation and expansion methods have been developed to harness the full antitumor potential of NK cells. These protocols have varied greatly between laboratories and several have been optimized for large-scale clinical use despite associated complexity and high cost. Here, we present a simple method of “adherent” enrichment and expansion of NK cells, developed using both healthy donors’ and cancer patients’ peripheral blood mononuclear cells (PBMCs), and compare its effectiveness with various published protocols to highlight the pros and cons of their use in adoptive cell therapy. By building upon the concepts and data presented, future research can be adapted to provide simple, cost-effective, reproducible, and translatable procedures for personalized treatment with NK cells

    Complexity Analysis in the PR, QT, RR and ST Segments of ECG for Early Assessment of Severity in Cardiac Autonomic Neuropathy

    No full text
    Early-stage detection of cardiac autonomic neuropathy (CAN) is important for better management of the disease and prevents hospitalization. This study has investigated the complex nature of PR, QT, RR, and ST time segments of ECG signals by computing the fractal dimension (FD) of all segments from 20 min ECG recordings of people with different severity of the disease and healthy individuals. The mean computed for each ECG time segment to distinguish between subjects was insufficient for an early diagnosis. Statistical analysis shows that the change of FD in various time segments of ECG throughout the recording was most suitable to assess the steps for severity in symptoms of CAN between the healthy and the subjects with early symptoms of CAN. The complexity of ECG features was evaluated using various classifier models, namely, support vector machine (SVM), naĂŻve Bayes, random forest, K-nearest neighbor (KNN), AdaBoost, and neural networks. Performance measures were computed on all models, with a maximum neural network classifier having an accuracy of 96.9%. Feature ranking results show that fractal features have more significance than the time segments of ECG in differentiating the subjects. The results of statistical validation show that all the selected features based on ECG physiology proved to have an evident complexity change between normal and severity stages of CAN. Thus, this work reports the complexity analysis in all the selected time segments of ECG that can be an effective tool for early diagnostics for CAN

    Indoleamine 2, 3-dioxygenase (IDO): Biology and target in cancer immunotherapies

    No full text
    © 2016 Bentham Science Publishers. Indoleamine 2, 3-dioxygenase (IDO) is a heme-containing oxidoreductase that catalyzes the initial and rate-limiting step in the breakdown of non-dietary tryptophan. The biology and immunomodulatory role for IDO is discussed in this review with a focus on its interaction with immune cells and its potential therapeutic target in the clinic. IDO has been revealed to be a central regulator of immune responses in a broad variety of physiological and pathological settings, mostly serving as a multifaceted negative feedback mechanism, to self-regulate immune responses. IDO is considered a therapeutic target in cancer and the use of IDO inhibitors as single agent or in combination with other treatment modalities are under active investigation

    Complexity Analysis in the PR, QT, RR and ST Segments of ECG for Early Assessment of Severity in Cardiac Autonomic Neuropathy

    No full text
    Early-stage detection of cardiac autonomic neuropathy (CAN) is important for better management of the disease and prevents hospitalization. This study has investigated the complex nature of PR, QT, RR, and ST time segments of ECG signals by computing the fractal dimension (FD) of all segments from 20 min ECG recordings of people with different severity of the disease and healthy individuals. The mean computed for each ECG time segment to distinguish between subjects was insufficient for an early diagnosis. Statistical analysis shows that the change of FD in various time segments of ECG throughout the recording was most suitable to assess the steps for severity in symptoms of CAN between the healthy and the subjects with early symptoms of CAN. The complexity of ECG features was evaluated using various classifier models, namely, support vector machine (SVM), naïve Bayes, random forest, K-nearest neighbor (KNN), AdaBoost, and neural networks. Performance measures were computed on all models, with a maximum neural network classifier having an accuracy of 96.9%. Feature ranking results show that fractal features have more significance than the time segments of ECG in differentiating the subjects. The results of statistical validation show that all the selected features based on ECG physiology proved to have an evident complexity change between normal and severity stages of CAN. Thus, this work reports the complexity analysis in all the selected time segments of ECG that can be an effective tool for early diagnostics for CAN
    corecore