88 research outputs found

    Generation of Small 32P-Labeled Peptides as a Potential Approach to Colorectal Cancer Therapy

    Get PDF
    Cancers have been revealed to be extremely heterogenous in terms of the frequency and types of mutations present in cells from different malignant tumors. Thus, it is likely that uniform clinical treatment is not optimal for all patients, and that the development of individualized therapeutic regimens may be beneficial. We describe the generation of multiple, unique small peptides nine to thirty-four amino acids in length which, when labeled with the radioisotope 32P, bind with vastly differing efficiencies to cell lines derived from different colon adenocarcinomas. In addition, the most effective of these peptides permanently transfers the 32P radioisotope to colorectal cancer cellular proteins within two hours at a rate that is more than 150 times higher than in cell lines derived from other cancers or from the normal tissues tested. Currently, the only two FDA-approved radioimmunotherapeutic agents in use both employ antibodies directed against the B cell marker CD20 for the treatment of non-Hodgkin's lymphoma. By using the method described herein, large numbers of different 32P-labeled peptides can be readily produced and assayed against a broad spectrum of cancer types. This report proposes the development and use of 32P-labeled peptides as potential individualized peptide-binding therapies for the treatment of colon adenocarcinoma patients

    Silencing of Claudin-11 Is Associated with Increased Invasiveness of Gastric Cancer Cells

    Get PDF
    Claudins are membrane proteins that play critical roles in tight junction (TJ) formation and function. Members of the claudin gene family have been demonstrated to be aberrantly regulated, and to participate in the pathogenesis of various human cancers. In the present study, we report that claudin-11 (CLDN11) is silenced in gastric cancer via hypermethylation of its promoter region.Levels of CLDN11 methylation and mRNA expression were measured in primary gastric cancer tissues, noncancerous gastric mucosae, and cell lines of gastric origin using quantitative methylation-specific PCR (qMSP) and quantitative reverse transcriptase-PCR (qRT-PCR), respectively. Analyses of paired gastric cancers and adjacent normal gastric tissues revealed hypermethylation of the CLDN11 promoter region in gastric cancers, and this hypermethylation was significantly correlated with downregulation of CLDN11 expression vs. normal tissues. The CLDN11 promoter region was also hypermethylated in all gastric cancer cell lines tested relative to immortalized normal gastric epithelial cells. Moreover, CLDN11 mRNA expression was inversely correlated with its methylation level. Treatment of CLDN11-nonexpressing gastric cancer cells with 5-aza-2'-deoxycytidine restored CLDN11 expression. Moreover, siRNA-mediated knockdown of CLDN11 expression in normal gastric epithelial cells increased their motility and invasiveness.These data suggest that hypermethylation of CLDN11, leading to downregulated expression, contributes to gastric carcinogenesis by increasing cellular motility and invasiveness. A further understanding of the mechanisms underlying the role of claudin proteins in gastric carcinogenesis will likely help in the identification of novel approaches for diagnosis and therapy of gastric cancer

    Phase II study of continuous daily sunitinib dosing in patients with previously treated advanced non-small cell lung cancer

    Get PDF
    Background:Sunitinib malate (SUTENT) has promising single-agent activity given on Schedule 4/2 (4 weeks on treatment followed by 2 weeks off treatment) in advanced non-small cell lung cancer (NSCLC).Methods:We examined the activity of sunitinib on a continuous daily dosing (CDD) schedule in an open-label, multicentre phase II study in patients with previously treated, advanced NSCLC. Patients ⩾18 years with stage IIIB/IV NSCLC after failure with platinum-based chemotherapy, received sunitinib 37.5 mg per day. The primary end point was objective response rate (ORR). Secondary end points included progression-free survival (PFS), overall survival (OS), 1-year survival rate, and safety.Results:Of 47 patients receiving sunitinib, one patient achieved a confirmed partial response (ORR 2.1% (95% confidence interval (CI) 0.1, 11.3)) and 11 (23.4%) had stable disease (SD) ⩾8 weeks. Five patients had SD>6 months. Median PFS was 11.9 weeks (95% CI 8.6, 14.1) and median OS was 37.1 weeks (95% CI 31.1, 69.7). The 1-year survival probability was 38.4% (95% CI 24.2, 52.5). Treatment was generally well tolerated.Conclusions:The safety profile and time-to-event analyses, albeit relatively low response rate of 2%, suggest single-agent sunitinib on a CDD schedule may be a potential therapeutic agent for patients with advanced, refractory NSCLC

    Multicenter, Phase II Trial of Sunitinib in Previously Treated, Advanced Non–Small-Cell Lung Cancer

    Get PDF
    Aberrant vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) signaling have been shown to play a role in non–small-cell lung cancer (NSCLC) pathogenesis and are associated with decreased survival. We evaluated the clinical activity and tolerability of sunitinib malate (SU11248), an oral, multitargeted tyrosine kinase inhibitor that blocks the activity of receptors for VEGF and PDGF, as well as related tyrosine kinases in patients with previously treated, advanced NSCLC

    Genome-wide assessment of differential roles for p300 and CBP in transcription regulation

    Get PDF
    Despite high levels of homology, transcription coactivators p300 and CREB binding protein (CBP) are both indispensable during embryogenesis. They are largely known to regulate the same genes. To identify genes preferentially regulated by p300 or CBP, we performed an extensive genome-wide survey using the ChIP-seq on cell-cycle synchronized cells. We found that 57% of the tags were within genes or proximal promoters, with an overall preference for binding to transcription start and end sites. The heterogeneous binding patterns possibly reflect the divergent roles of CBP and p300 in transcriptional regulation. Most of the 16 103 genes were bound by both CBP and p300. However, after stimulation 89 and 1944 genes were preferentially bound by CBP or p300, respectively. Target genes were found to be primarily involved in the regulation of metabolic and developmental processes, and transcription, with CBP showing a stronger preference than p300 for genes active in negative regulation of transcription. Analysis of transcription factor binding sites suggest that CBP and p300 have many partners in common, but AP-1 and Serum Response Factor (SRF) appear to be more prominent in CBP-specific sequences, whereas AP-2 and SP1 are enriched in p300-specific targets. Taken together, our findings further elucidate the distinct roles of coactivators p300 and CBP in transcriptional regulation

    Toxicogenomic analysis of exposure to TCDD, PCB126 and PCB153: identification of genomic biomarkers of exposure to AhR ligands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two year cancer bioassays conducted by the National Toxicology Program have shown chronic exposure to dioxin-like compounds (DLCs) to lead to the development of both neoplastic and non-neoplastic lesions in the hepatic tissue of female Sprague Dawley rats. Most, if not all, of the hepatotoxic effects induced by DLC's are believed to involve the binding and activation of the transcription factor, the aryl hydrocarbon receptor (AhR). Toxicogenomics was implemented to identify genomic responses that may be contributing to the development of hepatotoxicity in rats.</p> <p>Results</p> <p>Through comparative analysis of time-course microarray data, unique hepatic gene expression signatures were identified for the DLCs, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (100 ng/kg/day) and 3,3',4,4',5-pentachlorobiphenyl (PCB126) (1000 ng/kg/day) and the non-DLC 2,2',4,4',5,5',-hexachlorobiphenyl (PCB153) (1000 μg/kg/day). A common time independent signature of 41 AhR genomic biomarkers was identified which exhibited at least a 2-fold change in expression following subchronic (13-wk) and chronic (52-wk) p.o. exposure to TCDD and PCB126, but not the non DLC, PCB153. Real time qPCR analysis validated that 30 of these genes also exhibited at least a 2-fold change in hepatic expression at 24 hr following a single exposure to TCDD (5 μg/kg, po). Phenotypic anchoring was conducted which identified forty-six genes that were differently expressed both following chronic p.o. exposure to DLCs and in previously reported studies of cholangiocarcinoma or hepatocellular adenoma.</p> <p>Conclusions</p> <p>Together these analyses provide a comprehensive description of the genomic responses which occur in rat hepatic tissue with exposure to AhR ligands and will help to isolate those genomic responses which are contributing to the hepatotoxicity observed with exposure to DLCs. In addition, the time independent gene expression signature of the AhR ligands may assist in identifying other agents with the potential to elicit dioxin-like hepatotoxic responses.</p

    Widespread Hypomethylation Occurs Early and Synergizes with Gene Amplification during Esophageal Carcinogenesis

    Get PDF
    Although a combination of genomic and epigenetic alterations are implicated in the multistep transformation of normal squamous esophageal epithelium to Barrett esophagus, dysplasia, and adenocarcinoma, the combinatorial effect of these changes is unknown. By integrating genome-wide DNA methylation, copy number, and transcriptomic datasets obtained from endoscopic biopsies of neoplastic progression within the same individual, we are uniquely able to define the molecular events associated progression of Barrett esophagus. We find that the previously reported global hypomethylation phenomenon in cancer has its origins at the earliest stages of epithelial carcinogenesis. Promoter hypomethylation synergizes with gene amplification and leads to significant upregulation of a chr4q21 chemokine cluster and other transcripts during Barrett neoplasia. In contrast, gene-specific hypermethylation is observed at a restricted number of loci and, in combination with hemi-allelic deletions, leads to downregulatation of selected transcripts during multistep progression. We also observe that epigenetic regulation during epithelial carcinogenesis is not restricted to traditionally defined “CpG islands,” but may also occur through a mechanism of differential methylation outside of these regions. Finally, validation of novel upregulated targets (CXCL1 and 3, GATA6, and DMBT1) in a larger independent panel of samples confirms the utility of integrative analysis in cancer biomarker discovery
    corecore