198 research outputs found

    Ultrasensitive strain gauges enabled by graphene-stabilized silicone emulsions

    Get PDF
    Here, an approach is presented to incorporate graphene nanosheets into a silicone rubber matrix via solid stabilization of oil‐in‐water emulsions. These emulsions can be cured into discrete, graphene‐coated silicone balls or continuous, elastomeric films by controlling the degree of coalescence. The electromechanical properties of the resulting composites as a function of interdiffusion time and graphene loading level are characterized. With conductivities approaching 1 S m−1, elongation to break up to 160%, and a gauge factor of ≈20 in the low‐strain linear regime, small strains such as pulse can be accurately measured. At higher strains, the electromechanical response exhibits a robust exponential dependence, allowing accurate readout for higher strain movements such as chest motion and joint bending. The exponential gauge factor is found to be ≈20, independent of loading level and valid up to 80% strain; this consistent performance is due to the emulsion‐templated microstructure of the composites. The robust behavior may facilitate high‐strain sensing in the nonlinear regime using nanocomposites, where relative resistance change values in excess of 107 enable highly accurate bodily motion monitoring

    Environmental effects on the construction and physical properties of Bombyx mori cocoons

    Get PDF
    Published studies of silks focus on processed fibres or the optimum conditions for their production. Consequently, the effects of the environment on the physical properties of the cocoon are either poorly understood or kept as closely guarded industrial secrets. In this study, we test the hypothesis that silkworms as ectothermic animals respond to environmental conditions by modifying their spinning behaviour in a predictable manner, which affects the material properties of the cocoons in predictable ways. Our experiments subjected spinning Bombyx mori silkworms to a range of temperatures and relative humidities that, as we show, affect the morphology and mechanical properties of the cocoon. Specifically, temperature affects cocoon morphology as well as its stiffness and strength, which we attribute to altered spinning behaviour and sericin curing time. Relative humidity affects cocoon colouration, perhaps due to tanning agents. Finally, the water content of a cocoon modifies sericin distribution and stiffness without changing toughness. Our results demonstrate environmentally induced quality parameters that must not be ignored when analysing and deploying silk cocoons, silk filaments or silk-derived bio-polymers

    Cervical determinants of anal HPV infection and high-grade anal lesions in women: a collaborative pooled analysis

    Get PDF
    Cervical cancer screening might contribute to the prevention of anal cancer in women. We aimed to investigate if routine cervical cancer screening results-namely high-risk human papillomavirus (HPV) infection and cytohistopathology-predict anal HPV16 infection, anal high-grade squamous intraepithelial lesions (HSIL) and, hence, anal cancer.International Agency for Research on Cance

    Setting the record straight: a rebuttal to an erroneous analysis on transgenic insecticidal crops and natural enemies

    Get PDF
    While we think that environmental risk assessments of transgenic insect-resistant crops are important, we believe the paper by Lövei et al. (2009) advocates inappropriate summarization and statistical methods, a negatively biased and incorrect interpretation of the published data on non-target effects, and fails to place any putative effect into a meaningful ecological context. Such erroneous analyses do not serve the scientific or regulatory communities

    Structural insights into Ca2+-activated long-range allosteric channel gating of RyR1

    Get PDF
    Ryanodine receptors (RyRs) are a class of giant ion channels with molecular mass over 2.2 mega-Daltons. These channels mediate calcium signaling in a variety of cells. Since more than 80% of the RyR protein is folded into the cytoplasmic assembly and the remaining residues form the transmembrane domain, it has been hypothesized that the activation and regulation of RyR channels occur through an as yet uncharacterized long-range allosteric mechanism. Here we report the characterization of a Ca2+-activated open-state RyR1 structure by cryo-electron microscopy. The structure has an overall resolution of 4.9 angstrom and a resolution of 4.2 angstrom for the core region. In comparison with the previously determined apo/closed-state structure, we observed long-range allosteric gating of the channel upon Ca2+ activation. In-depth structural analyses elucidated a novel channel-gating mechanism and a novel ion selectivity mechanism of RyR1. Our work not only provides structural insights into the molecular mechanisms of channel gating and regulation of RyRs, but also sheds light on structural basis for channel-gating and ion selectivity mechanisms for the six-transmembrane-helix cation channel family.Strategic Priority Research Program of Chinese Academy of Sciences [XDB08030202]; National Basic Research Program (973 Program); Ministry of Science & Technology of China [2012CB917200, 2014CB910700]; National Natural Science Foundation of China [31270768]; Ministry of Education of China (111 Program China)SCI(E)PubMedäž­ć›œç§‘æŠ€æ žćżƒæœŸćˆŠ(ISTIC)[email protected]; [email protected]
    • 

    corecore