144 research outputs found

    8.2 ka event North Sea hydrography determined by bivalve shell stable isotope geochemistry

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordThe abrupt 8.2 ka cold event has been widely described from Greenland and North Atlantic records. However, its expression in shelf seas is poorly documented, and the temporal resolution of most marine records is inadequate to precisely determine the chronology of major events. A robust hydrographical reconstruction can provide an insight on climatic reaction times to perturbations to the Atlantic Meridional Overturning Circulation. Here we present an annually-resolved temperature and water column stratification reconstruction based on stable isotope geochemistry of Arctica islandica shells from the Fladen Ground (northern North Sea) temporally coherent with Greenland ice core records. Our age model is based on a growth increment chronology obtained from four radiometrically-dated shells covering the 8290–8100 cal BP interval. Our results indicate that a sudden sea level rise (SSLR) event-driven column stratification occurred between ages 8320–8220 cal BP. Thirty years later, cold conditions inhibited water column stratification but an eventual incursion of sub-Arctic waters into the North Sea re-established density-driven stratification. The water temperatures reached their minimum of ~3.7 °C 55 years after the SSLR. Intermittently-mixed conditions were later established when the sub-Arctic waters receded.Natural Environment Research Council (NERC)European Union FP

    Motor control drives visual bodily judgements

    Get PDF
    The ‘embodied cognition’ framework proposes that our motor repertoire shapes visual perception and cognition. But recent studies showing normal visual body representation in individuals born without hands challenges the contribution of motor control on visual body representation. Here, we studied hand laterality judgements in three groups with fundamentally different visual and motor hand experiences: two-handed controls, one-handers born without a hand (congenital one-handers) and one-handers with an acquired amputation (amputees). Congenital one-handers, lacking both motor and first-person visual information of their missing hand, diverged in their performance from the other groups, exhibiting more errors for their intact hand and slower reaction-times for challenging hand postures. Amputees, who have lingering non-visual motor control of their missing (phantom) hand, performed the task similarly to controls. Amputees’ reaction-times for visual laterality judgements correlated positively with their phantom hand’s motor control, such that deteriorated motor control associated with slower visual laterality judgements. Finally, we have implemented a computational simulation to describe how a mechanism that utilises a single hand representation in congenital one-handers as opposed to two in controls, could replicate our empirical results. Together, our findings demonstrate that motor control is a driver in making visual bodily judgments

    Ab initio simulations of liquid NaSn alloys: Zintl anions and network formation

    Full text link
    Using the Car-Parrinello technique, ab initio molecular dynamics simulations are performed for liquid NaSn alloys in five different compositions (20, 40, 50, 57 and 80 % sodium). The obtained structure factors agree well with the data from neutron scattering experiments. The measured prepeak in the structure factor is reproduced qualitatively for most compositions. The calculated and measured positions of all peaks show the same trend as function of the composition.\\ The dynamic simulations also yield information about the formation and stability of Sn4_4 clusters (Zintl anions) in the liquid. In our simulations of compositions with 50 and 57 % sodium we observe the formation of networks of tin atoms. Thus, isolated tin clusters are not stable in such liquids. For the composition with 20 % tin only isolated atoms or dimers of tin appear, ``octet compounds'' of one Sn atom surrounded by 4 Na atoms are not observed.Comment: 12 pages, Latex, 3 Figures on reques

    Angular Distribution of Auger Electrons Emitted through the Resonant Transfer and Excitation Process Following O⁔âș+He Collisions

    Get PDF
    This Letter reports the first measurements of the angular distribution of Auger electrons emitted from the decay of the (1s2s2p2)3D O4+** doubly excited state formed predominantly through resonant transfer and excitation (RTE) in collisions of 13-MeV O5+ projectiles with He. The (1s2s2p2)3D angular distribution is strongly peaked along the beam direction, in agreement with recent calculations of the RTE angle-dependent impulse approximation. Furthermore, interference effects between the RTE and the elastic target direct-ionization channels are observed

    Electron-Electron Interactions in Transfer and Excitation in F⁞âș →₂ Collisions

    Get PDF
    We have measured projectile Auger electrons emitted after collisions of H-like F with H2. The cross sections for emission of KLL, KLM, KLN, and KLO Auger electrons show maxima as a function of the projectile energy. One maximum in the KLL emission cross section is due to resonant transfer and excitation. A second maximum in the cross section for KLL emission as well as the maxima in the emission cross section for the higher-n Auger electrons are attributed to a new transfer and excitation process. This involves excitation of a projectile electron by one target electron accompanied by the capture of a second target electron

    Double Excitation of He by Fast Ions

    Get PDF
    Autoionization of He atoms following double excitation by electrons, protons, CQ+ (Q=4-6), and FQ+ (Q=7-9) ions has been studied. The electron-emission yields from the doubly excited 2s2(1S), 2s2p(1P), and 2p2(1P) states were measured at the reduced projectile energy of 1.5 MeV/nucleon for observation angles between 10°and 60°. The results indicate excitation to the 2s2(1S) and 2p2(1D) states increases as approximately Q3, while excitation to the 2s2p(1P) state varies as approximately Q2, where Q is the charge of the projectile. These charge dependences are significantly less than the Q4 dependence expected in the independent-electron model, suggesting the interaction between the two target electrons is important in creating the doubly excited states

    Projectile Energy Loss in Multiply Ionizing Ion-Atom Collisions

    Get PDF
    The projectile energy loss for 7.5--25-MeV C6+,5+ and F6+ ions was measured for single collisions with He, Ne, Ar, and Kr as a function of the recoil-ion charge state and the projectile scattering. This energy loss was measured for collisions in which the projectile captured an electron and for those involving just direct ionization. We investigated and found a large average energy transfer (100--250 eV/electron) to the continuum electrons. A strong increase of the scattering angle with recoil-ion charge state was observed for both capture and direct ionization. The results imply that, for smaller impact parameters, higher recoil-ion charge states are produced and that higher energy losses are obtained. We observed a weak target-Z dependence of the energy loss. The results are compared with n-body classical-trajectory Monte Carlo calculations by Olson, semiclassical-approximation calculations by Schuch et al. [Nucl. Instrum. Methods Phys. Res. Sect. B 42, 566 (1989)], and the energy-deposition model

    Population of Highly Excited Intermediate Resonance States by Electron Transfer and Excitation

    Get PDF
    Coincidences between two sulfur K x rays were detected from collisions of hydrogenlike S ions with H2 gas in the projectile energy range between 150 and 225 MeV. These K x rays are emitted in the decay of doubly excited states formed in the collisions via transfer and excitation. The excitation function for two coincident KÎČ transitions peaks at about 175 MeV, slightly above the expected KMM resonance energy for resonant transfer and excitation (RTE). This demonstrates the occurrence of ΔN≄2 transitions (i.e., KMM and higher resonances) in the RTE process. The cross sections for the population of the very highly excited states are higher than those predicted by theoretical calculations that use dielectronic recombination rates folded with the Compton profile for the bound electrons

    Resonant Dielectronic and Direct Excitation in Crystal Channels

    Get PDF
    We have observed dielectronic and direct excitation of H-like S15+ and Ca19+ and He-like Ti20+ ions in silicon channels caused by collision with weakly bound target electrons which behave as a free-electron gas. As in vacuo, relaxation of the doubly excited states can occur radiatively leading to ions of decreased charge, but in a crystal channel collisional effects can cause double ionization. The effects are seen in both the x-ray yields and charge-state fractions, and, in the case of Ti20+, in charge-state x-ray coincidences
    • 

    corecore