982 research outputs found

    Identification of potential marker genes for <i>Trichoderma harzianum</i> strains with high antagonistic potential against <i>Rhizoctonia solani</i> by a rapid subtraction hybridization approach

    Get PDF
    A rapid subtraction hybridization approach was used to isolate genes differentially expressed during mycelial contact between Trichoderma harzianum (Hypocrea lixii) and Rhizoctonia solani, and could serve as marker genes for selection of superior biocontrol strains. Putatively positive clones were evaluated by transcription analysis during mycelial contact with R. solani versus growth on glucose, and for their differential transcription between two strains with either strong or poor biocontrol capability before, at, and after contact with R. solani. Besides four clones, which had similarity to putative but as yet uncharacterized proteins, they comprised ribosomal proteins, proteins involved in transcriptional switch and regulation, amino acid and energy catabolism, multidrug resistance, and degradation of proteins and glucans. Transcription of three clones was evaluated in five T. harzianum strains under confrontation conditions with R. solani. Two clones&#8212;acetyl-xylane esterase AXE1 and endoglucanase Cel61b&#8212;showed significant upregulation during in vivo confrontation of a T. harzianum strain that successively demonstrated a very high antagonistic capability towards R. solani, while expression was progressively lower in a series of T. harzianum strains with intermediate to poor antagonistic activity. These clones are promising candidates for use as markers in the screening of improved T. harzianum biocontrol strains

    The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the biotechnological workhorse <it>Trichoderma reesei </it>(<it>Hypocrea jecorina</it>) transcription of cellulase genes as well as efficiency of the secreted cellulase mixture are modulated by light. Components of the heterotrimeric G-protein pathway interact with light-dependent signals, rendering this pathway a key regulator of cellulase gene expression.</p> <p>Results</p> <p>As regulators of heterotrimeric G-protein signaling, class I phosducin-like proteins, are assumed to act as co-chaperones for G-protein beta-gamma folding and exert their function in response to light in higher eukaryotes. Our results revealed light responsive transcription of the <it>T. reesei </it>class I phosducin-like protein gene <it>phlp1 </it>and indicate a light dependent function of PhLP1 also in fungi. We showed the functions of PhLP1, GNB1 and GNG1 in the same pathway, with one major output being the regulation of transcription of glycoside hydrolase genes including cellulase genes in <it>T. reesei</it>. We found no direct correlation between the growth rate and global regulation of glycoside hydrolases, which suggests that regulation of growth does not occur only at the level of substrate degradation efficiency.</p> <p>Additionally, PhLP1, GNB1 and GNG1 are all important for proper regulation of light responsiveness during long term exposure. In their absence, the amount of light regulated genes increased from 2.7% in wild type to 14% in Δ<it>phlp1</it>. Besides from the regulation of degradative enzymes, PhLP1 was also found to impact on the transcription of genes involved in sexual development, which was in accordance with decreased efficiency of fruiting body formation in Δ<it>phlp1</it>. The lack of GNB1 drastically diminished ascospore discharge in <it>T. reesei</it>.</p> <p>Conclusions</p> <p>The heterotrimeric G-protein pathway is crucial for the interconnection of nutrient signaling and light response of <it>T. reesei</it>, with the class I phosducin-like protein PhLP1, GNB1 and GNG1 acting as important nodes, which influence light responsiveness, glycoside hydrolase gene transcription and sexual development.</p

    The role of pheromone receptors for communication and mating in Hypocrea jecorina (Trichoderma reesei)

    Get PDF
    AbstractDiscovery of sexual development in the ascomycete Trichoderma reesei (Hypocrea jecorina) as well as detection of a novel class of peptide pheromone precursors in this fungus indicates promising insights into its physiology and lifestyle. Here we investigated the role of the two pheromone receptors HPR1 and HPR2 in the H. jecorina pheromone-system.We found that these pheromone receptors show an unexpectedly high genetic variability among H. jecorina strains. HPR1 and HPR2 confer female fertility in their cognate mating types (MAT1-1 or MAT1-2, respectively) and mediate induction of fruiting body development. One compatible pheromone precursor–pheromone receptor pair (hpr1–hpp1 or hpr2–ppg1) in mating partners was sufficient for sexual development. Additionally, pheromone receptors were essential for ascospore development, hence indicating their involvement in post-fertilisation events.Neither pheromone precursor genes nor pheromone receptor genes of H. jecorina were transcribed in a strictly mating type dependent manner, but showed enhanced expression levels in the cognate mating type. In the presence of a mating partner under conditions favoring sexual development, transcript levels of pheromone precursors were significantly increased, while those of pheromone receptor genes do not show this trend. In the female sterile T. reesei strain QM6a, transcriptional responses of pheromone precursor and pheromone receptor genes to a mating partner were clearly altered compared to the female fertile wild-type strain CBS999.97. Consequently, a delayed and inappropriate response to the mating partner may be one aspect causing female sterility in QM6a

    Porcine Hepatitis E

    Get PDF
    Hepatitis E virus (HEV) is a zoonotic agent that can be transmitted from pigs to humans via consumption of pork and products derived of it. Recently, the European Food Safety Authority (EFSA) has published a scientific opinion urging for measures to prevent Hepatitis E virus (HEV) from entering the food chain

    Identification of potential marker genes for Trichoderma harzianum strains with high antagonistic potential against Rhizoctonia solani by a rapid subtraction hybridization approach.

    Get PDF
    A rapid subtraction hybridization approach was used to isolate genes differentially expressed during mycelial contact between Trichoderma harzianum (Hypocrea lixii) and Rhizoctonia solani, and could serve as marker genes for selection of superior biocontrol strains. Putatively positive clones were evaluated by transcription analysis during mycelial contact with R. solani versus growth on glucose, and for their differential transcription between two strains with either strong or poor biocontrol capability before, at, and after contact with R. solani. Besides four clones, which had similarity to putative but as yet uncharacterized proteins, they comprised ribosomal proteins, proteins involved in transcriptional switch and regulation, amino acid and energy catabolism, multidrug resistance, and degradation of proteins and glucans. Transcription of three clones was evaluated in five T. harzianum strains under confrontation conditions with R. solani. Two clones—acetyl-xylane esterase AXE1 and endoglucanase Cel61b—showed significant upregulation during in vivo confrontation of a T. harzianum strain that successively demonstrated a very high antagonistic capability towards R. solani, while expression was progressively lower in a series of T. harzianum strains with intermediate to poor antagonistic activity. These clones are promising candidates for use as markers in the screening of improved T. harzianum biocontrol strains

    Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In fungi, light is primarily known to influence general morphogenesis and both sexual and asexual sporulation. In order to expand the knowledge on the effect of light in fungi and to determine the role of the light regulatory protein ENVOY in the implementation of this effect, we performed a global screen for genes, which are specifically effected by light in the fungus <it>Hypocrea jecorina </it>(anamorph <it>Trichoderma reesei</it>) using Rapid Subtraction Hybridization (RaSH). Based on these data, we analyzed whether these genes are influenced by ENVOY and if overexpression of ENVOY in darkness would be sufficient to execute its function.</p> <p>Results</p> <p>The cellular functions of the detected light responsive genes comprised a variety of roles in transcription, translation, signal transduction, metabolism, and transport. Their response to light with respect to the involvement of ENVOY could be classified as follows: (i) ENVOY-mediated upregulation by light; (ii) ENVOY-independent upregulation by light; (iii) ENVOY-antagonized upregulation by light; ENVOY-dependent repression by light; (iv) ENVOY-independent repression by light; and (v) both positive and negative regulation by ENVOY of genes not responsive to light in the wild-type. ENVOY was found to be crucial for normal growth in light on various carbon sources and is not able to execute its regulatory function if overexpressed in the darkness.</p> <p>Conclusion</p> <p>The different responses indicate that light impacts fungi like <it>H. jecorina </it>at several cellular processes, and that it has both positive and negative effects. The data also emphasize that ENVOY has an apparently more widespread cellular role in this process than only in modulating the response to light.</p

    SST-GATE: A dual mirror telescope for the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) will be the world's first open observatory for very high energy gamma-rays. Around a hundred telescopes of different sizes will be used to detect the Cherenkov light that results from gamma-ray induced air showers in the atmosphere. Amongst them, a large number of Small Size Telescopes (SST), with a diameter of about 4 m, will assure an unprecedented coverage of the high energy end of the electromagnetic spectrum (above ~1TeV to beyond 100 TeV) and will open up a new window on the non-thermal sky. Several concepts for the SST design are currently being investigated with the aim of combining a large field of view (~9 degrees) with a good resolution of the shower images, as well as minimizing costs. These include a Davies-Cotton configuration with a Geiger-mode avalanche photodiode (GAPD) based camera, as pioneered by FACT, and a novel and as yet untested design based on the Schwarzschild-Couder configuration, which uses a secondary mirror to reduce the plate-scale and to allow for a wide field of view with a light-weight camera, e.g. using GAPDs or multi-anode photomultipliers. One objective of the GATE (Gamma-ray Telescope Elements) programme is to build one of the first Schwarzschild-Couder prototypes and to evaluate its performance. The construction of the SST-GATE prototype on the campus of the Paris Observatory in Meudon is under way. We report on the current status of the project and provide details of the opto-mechanical design of the prototype, the development of its control software, and simulations of its expected performance.Comment: In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at arXiv:1307.223

    Light-dependent roles of the G-protein α subunit GNA1 of Hypocrea jecorina (anamorph Trichoderma reesei)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The filamentous ascomycete <it>Hypocrea jecorina </it>(anamorph <it>Trichoderma reesei</it>) is primarily known for its efficient enzymatic machinery that it utilizes to decompose cellulosic substrates. Nevertheless, the nature and transmission of the signals initiating and modulating this machinery are largely unknown. Heterotrimeric G-protein signaling represents one of the best studied signal transduction pathways in fungi.</p> <p>Results</p> <p>Analysis of the regulatory targets of the G-protein α subunit GNA1 in <it>H. jecorina </it>revealed a carbon source and light-dependent role in signal transduction. Deletion of <it>gna1 </it>led to significantly decreased biomass formation in darkness in submersed culture but had only minor effects on morphology and hyphal apical extension rates on solid medium. Cellulase gene transcription was abolished in Δ<it>gna1 </it>on cellulose in light and enhanced in darkness. However, analysis of strains expressing a constitutively activated GNA1 revealed that GNA1 does not transmit the essential inducing signal. Instead, it relates a modulating signal with light-dependent significance, since induction still required the presence of an inducer. We show that regulation of transcription and activity of GNA1 involves a carbon source-dependent feedback cycle. Additionally we found a function of GNA1 in hydrophobin regulation as well as effects on conidiation and tolerance of osmotic and oxidative stress.</p> <p>Conclusion</p> <p>We conclude that GNA1 transmits a signal the physiological relevance of which is dependent on both the carbon source as well as the light status. The widespread consequences of mutations in GNA1 indicate a broad function of this Gα subunit in appropriation of intracellular resources to environmental (especially nutritional) conditions.</p

    3D Spectrophotometry of Planetary Nebulae in the Bulge of M31

    Full text link
    We introduce crowded field integral field (3D) spectrophotometry as a useful technique for the study of resolved stellar populations in nearby galaxies. As a methodological test, we present a pilot study with selected extragalactic planetary nebulae (XPN) in the bulge of M31, demonstrating how 3D spectroscopy is able to improve the limited accuracy of background subtraction which one would normally obtain with classical slit spectroscopy. It is shown that due to the absence of slit effects, 3D is a most suitable technique for spectrophometry. We present spectra and line intensities for 5 XPN in M31, obtained with the MPFS instrument at the Russian 6m BTA, INTEGRAL at the WHT, and with PMAS at the Calar Alto 3.5m Telescope. Using 3D spectra of bright standard stars, we demonstrate that the PSF is sampled with high accuracy, providing a centroiding precision at the milli-arcsec level. Crowded field 3D spectrophotometry and the use of PSF fitting techniques is suggested as the method of choice for a number of similar observational problems, including luminous stars in nearby galaxies, supernovae, QSO host galaxies, gravitationally lensed QSOs, and others.Comment: (1) Astrophysikalisches Institut Potsdam, (2) University of Durham. 18 pages, 11 figures, accepted for publication in Ap
    corecore