727 research outputs found

    The Stability of Polar Oxide Surfaces

    Get PDF
    The structures of the polar surfaces of ZnO are studied using ab initio calculations and surface x-ray diffraction. The experimental and theoretical relaxations are in good agreement. The polar surfaces are shown to be very stable; the cleavage energy for the (0001)-Zn and (0001Ì… )-O surfaces is 4.0J/m2 comparable to 2.32J/m2 for the most stable nonpolar (1010) surface. The surfaces are stabilized by an electronic mechanism involving the transfer of 0.17 electrons between them. This leads to 2D metallic surface states, which has implications for the use of the material in gas sensing and catalytic applications

    Graphene Spin Valve Devices

    Full text link
    Graphene - a single atomic layer of graphite - is a recently-found two-dimensional form of carbon, which exhibits high crystal quality and ballistic electron transport at room temperature. Soft magnetic NiFe electrodes have been used to inject polarized spins into graphene and a 10% change in resistance has been observed as the electrodes switch from the parallel to the antiparallel state. This coupled with the fact that a field effect electrode can modulate the conductivity of these graphene films makes them exciting potential candidates for spin electronic devices.Comment: 3 pages, 6 figure

    On resonant scatterers as a factor limiting carrier mobility in graphene

    Full text link
    We show that graphene deposited on a substrate has a non-negligible density of atomic scale defects. This is evidenced by a previously unnoticed D peak in the Raman spectra with intensity of about 1% with respect to the G peak. We evaluated the effect of such impurities on electron transport by mimicking them with hydrogen adsorbates and measuring the induced changes in both mobility and Raman intensity. If the intervalley scatterers responsible for the D peak are monovalent, their concentration is sufficient to account for the limited mobilities achievable in graphene on a substrate.Comment: version 2: several comments are taken into account and refs adde

    Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy

    Full text link
    Atomic Force Microscopy (AFM) in the tapping (intermittent contact) mode is a commonly used tool to measure the thickness of graphene and few layer graphene (FLG) flakes on silicon oxide surfaces. It is a convenient tool to quickly determine the thickness of individual FLG films. However, reports from literature show a large variation of the measured thickness of graphene layers. This paper is focused on the imaging mechanism of tapping mode AFM (TAFM) when measuring graphene and FLG thickness and we show that at certain measurement parameters significant deviations can be introduced in the measured thickness of FLG flakes. An increase of as much as 1 nm can be observed in the measured height of FLG crystallites, when using an improperly chosen range of free amplitude values of the tapping cantilever. We present comparative Raman spectroscopy and TAFM measurements on selected single and multilayer graphene films, based on which we suggest ways to correctly measure graphene and FLG thickness using TAFM

    Employment Among People With Spinal Cord Injury in 22 Countries Across the World:Results From the International Spinal Cord Injury Community Survey

    Get PDF
    Objectives: To describe the employment situation of individuals with spinal cord injury (SCI) in 22 countries participating in the International Spinal Cord Injury community survey, to compare observed and predicted employment rates, to estimate gaps in employment rates among people with SCI compared with the general population, and to study differences in employment between men and women. Design: Cross-sectional survey. Setting: Community. Participants: People of employable age (N=9875; 18-64 y) with traumatic or non-traumatic SCI (including cauda equina syndrome) who were at least 18 years of age at the time of the survey, living in the community, and able to respond to one of the available language versions of the questionnaire. Interventions: Not applicable Main Outcome Measures: The observed employment rate was defined as performing paid work for at least 1 hour a week, and predicted employment rate was adjusted for sample composition from mixed logistic regression analysis. Results: A total of 9875 participants were included (165-1174 per country). Considerable differences in sample composition were found. The observed worldwide employment rate was 38%. A wide variation was found across countries, ranging from 10.3% to 61.4%. Some countries showed substantially higher or lower employment rates than predicted based on the composition of their sample. Gaps between the observed employment rates among participants with SCI and the general population ranged from 14.8% to 54.8%. On average, employment rates were slightly higher among men compared with women, but with large variation across countries. Employment gaps, however, were smaller among women for most countries. Conclusions: This first worldwide survey among people with SCI shows an average employment rate of 38%. Differences between observed and predicted employment rates across countries point at country-specific factors that warrant further investigation. Gaps with employment rates in the general population were considerable and call for actions for more inclusive labor market policies in most of the countries investigated. (C) 2020 by the American Congress of Rehabilitation Medicin

    Cascaded Optical Field Enhancement in Composite Plasmonic Nanostructures

    Get PDF
    Copyright © 2010 The American Physical SocietyWe present composite plasmonic nanostructures designed to achieve cascaded enhancement of electromagnetic fields at optical frequencies. Our structures were made with the help of electron-beam lithography and comprise a set of metallic nanodisks placed one above another. The optical properties of reproducible arrays of these structures were studied by using scanning confocal Raman spectroscopy. We show that our composite nanostructures robustly demonstrate dramatic enhancement of the Raman signals when compared to those measured from constituent elements

    Impurity-assisted tunneling in graphene

    Full text link
    The electric conductance of a strip of undoped graphene increases in the presence of a disorder potential, which is smooth on atomic scales. The phenomenon is attributed to impurity-assisted resonant tunneling of massless Dirac fermions. Employing the transfer matrix approach we demonstrate the resonant character of the conductivity enhancement in the presence of a single impurity. We also calculate the two-terminal conductivity for the model with one-dimensional fluctuations of disorder potential by a mapping onto a problem of Anderson localization.Comment: 6 pages, 3 figures, final version, typos corrected, references adde

    Strong Suppression of Electrical Noise in Bilayer Graphene Nano Devices

    Full text link
    Low-frequency 1/f noise is ubiquitous, and dominates the signal-to-noise performance in nanodevices. Here we investigate the noise characteristics of single-layer and bilayer graphene nano-devices, and uncover an unexpected 1/f noise behavior for bilayer devices. Graphene is a single layer of graphite, where carbon atoms form a 2D honeycomb lattice. Despite the similar composition, bilayer graphene (two graphene monolayers stacked in the natural graphite order) is a distinct 2D system with a different band structure and electrical properties. In graphene monolayers, the 1/f noise is found to follow Hooge's empirical relation with a noise parameter comparable to that of bulk semiconductors. However, this 1/f noise is strongly suppressed in bilayer graphene devices, and exhibits an unusual dependence on the carrier density, different from most other materials. The unexpected noise behavior in graphene bilayers is associated with its unique band structure that varies with the charge distribution among the two layers, resulting in an effective screening of potential fluctuations due to external impurity charges. The findings here point to exciting opportunities for graphene bilayers in low-noise applications
    • …
    corecore