631 research outputs found

    Minimal cut-off vacuum state constraints from CMB bispectrum statistics

    Full text link
    In this short note we translate the best available observational bounds on the CMB bispectrum amplitudes into constraints on a specific scale-invariant New Physics Hypersurface (NPH) model of vacuum state modifications, as first proposed by Danielsson, in general models of single-field inflation. As compared to the power spectrum the bispectrum constraints are less ambiguous and provide an interesting upper bound on the cut-off scale in general models of single-field inflation with a small speed of sound. This upper bound is incompatible with the power spectrum constraint for most of the parameter domain, leaving very little room for minimal cut-off vacuum state modifications in general single-field models with a small speed of sound.Comment: 9 pages, 1 figur

    Intersecting Branes in Matrix Theory

    Get PDF
    We construct BPS states in the matrix description of M-theory. Starting from a set of basic M-theory branes, we study pair intersections which preserve supersymmetry. The fractions of the maximal supersymmetry obtained in this way are 1/2, 1/4, 1/8, 3/16 and 1/16. In explicit examples we establish that the matrix BPS states correspond to (intersecting) brane configurations that are obtained from the d=11 supersymmetry algebra. This correspondence for the 1/2 supersymmetric branes includes the precise relations between the charges.Comment: 11 pages, LaTeX, no figures, minor changes, shortened version to be published in Physics Letters

    Bispectrum signatures of a modified vacuum in single field inflation with a small speed of sound

    Full text link
    Deviations from the Bunch-Davies vacuum during an inflationary period can leave a testable imprint on the higher-order correlations of the CMB and large scale structures in the Universe. The effect is particularly pronounced if the statistical non-Gaussianity is inherently large, such as in models of inflation with a small speed of sound, e.g. DBI. First reviewing the motivations for a modified vacuum, we calculate the non-Gaussianity for a general action with a small speed of sound. The shape of its bispectrum is found to most resemble the 'orthogonal' or 'local' templates depending on the phase of the Bogolyubov parameter. In particular, for DBI models of inflation the bispectrum can have a profound 'local' template feature, in contrast to previous results. Determining the projection into the observational templates allows us to derive constraints on the absolute value of the Bogolyubov parameter. In the small sound speed limit, the derived constraints are generally stronger than the existing constraint derived from the power spectrum. The bound on the absolute value of the Bogolyubov parameter ranges from the 10^-6 to the 10^-3 level for H/\Lambda_c = 10^-3, depending on the specific details of the model, the sound speed and the phase of the Bogolyubov parameter.Comment: 34 pages, 8 figures, 2 appendices. New in this version: added references, fixed typos, modified sentences. Version submitted to JCA

    Extracting New Physics from the CMB

    Full text link
    We review how initial state effects generically yield an oscillatory component in the primordial power spectrum of inflationary density perturbations. These oscillatory corrections parametrize unknown new physics at a scale MM and are potentially observable if the ratio Hinfl/MH_{infl}/M is sufficiently large. We clarify to what extent present and future CMB data analysis can distinguish between the different proposals for initial state corrections.Comment: Invited talk by B. Greene at the XXII Texas Symposium on Relativistic Astrophysics, Stanford University, 13-17 December 2004, (TSRA04-0001), 8 pages, LaTeX, some references added, added paragraph at the end of section 2 and an extra note added after the conclusions regarding modifications to the large k power spectra deduced from galaxy survey

    Oscillations in the bispectrum

    Get PDF
    There exist several models of inflation that produce primordial bispectra that contain a large number of oscillations. In this paper we discuss these models, and aim at finding a method of detecting such bispectra in the data. We explain how the recently proposed method of mode expansion of bispectra might be able to reconstruct these spectra from separable basis functions. Extracting these basis functions from the data might then lead to observational constraints on these models.Comment: 6 pages, 2 figures, submitted to JOP: Conference Series, PASCOS 201

    Spacetime-Filling Branes and Strings with Sixteen Supercharges

    Get PDF
    We discuss branes whose worldvolume dimension equals the target spacetime dimension, i.e. ``spacetime-filling branes''. In addition to the D9-branes, there are 9-branes in the NS-NS sectors of both the IIA and IIB strings. The worldvolume actions of these branes are constructed, via duality, from the known actions of branes with codimension larger than zero. Each of these types of branes is used in the construction of a string theory with sixteen supercharges by modding out a type II string by an appropriate discrete symmetry and adding 32 9-branes. These constructions are related by a web of dualities and each arises as a different limit of the Horava-Witten construction.Comment: 43 pages, LaTeX, 8 figures, uses html.sty, version to appear in Nucl. Phys.

    Boundary Effective Field Theory and Trans-Planckian Perturbations: Astrophysical Implications

    Full text link
    We contrast two approaches to calculating trans-Planckian corrections to the inflationary perturbation spectrum: the New Physics Hypersurface [NPH] model, in which modes are normalized when their physical wavelength first exceeds a critical value, and the Boundary Effective Field Theory [BEFT] approach, where the initial conditions for all modes are set at the same time, and modified by higher dimensional operators enumerated via an effective field theory calculation. We show that these two approaches -- as currently implemented -- lead to radically different expectations for the trans-Planckian corrections to the CMB and emphasize that in the BEFT formalism we expect the perturbation spectrum to be dominated by quantum gravity corrections for all scales shorter than some critical value. Conversely, in the NPH case the quantum effects only dominate the longest modes that are typically much larger than the present horizon size. Furthermore, the onset of the breakdown in the standard inflationary perturbation calculation predicted by the BEFT formalism is likely to be associated with a feature in the perturbation spectrum, and we discuss the observational signatures of this feature in both CMB and large scale structure observations. Finally, we discuss possible modifications to both calculational frameworks that would resolve the contradictions identified here.Comment: Reworded commentary, reference added (v2) References added (v3

    Forced motion of a probe particle near the colloidal glass transition

    Full text link
    We use confocal microscopy to study the motion of a magnetic bead in a dense colloidal suspension, near the colloidal glass transition volume fraction Ď•g\phi_g. For dense liquid-like samples near Ď•g\phi_g, below a threshold force the magnetic bead exhibits only localized caged motion. Above this force, the bead is pulled with a fluctuating velocity. The relationship between force and velocity becomes increasingly nonlinear as Ď•g\phi_g is approached. The threshold force and nonlinear drag force vary strongly with the volume fraction, while the velocity fluctuations do not change near the transition.Comment: 7 pages, 4 figures revised version, accepted for publication in Europhysics Letter
    • …
    corecore