12 research outputs found

    Thermoelectric properties of phase pure boron carbide prepared by a solution-based method

    No full text
    In this work, we report the thermoelectric properties of phase-pure carbon-rich boron carbide B4.05C synthesised from a sucrose precursor (here noted as ‘High Purity’ boron carbide) by a solution-based method. Three different kinds of commercially available boron carbide powders were also investigated as references. All samples were densified by spark plasma sintering at 50 MPa and at temperatures ranging from 1800°C to 2000°C. The newly synthesised boron carbide showed good sintering behaviour thanks to its small spherical grains, resulting in excellent relative densities >99%. Measurement of thermoelectric performance gave results comparable to previous reports of carbon-rich boron carbides. The High Purity boron carbide sample as well as investigated commercial reference materials showed high positive Seebeck coefficients close to 250 μVK−1 over the whole temperature range. Electrical conduction mechanisms of boron carbide is also discussed. The nearest-neighbour hopping conduction model may be a better description compared to the often-used bipolaron model.</p

    Key properties of inorganic thermoelectric materials - tables (version 1)

    No full text
    This paper presents tables of key thermoelectric properties, which define thermoelectric conversion efficiency, for a wide range of inorganic materials. The twelve families of materials included in these tables are primarily selected on the basis of well established, internationally-recognized performance and promise for current and future applications: tellurides, skutterudites, half Heuslers, Zintls, Mg-Sb antimonides, clathrates, FeGa3-type materials, actinides and lanthanides, oxides, sulfides, selenides, silicides, borides and carbides. As thermoelectric properties vary with temperature, data are presented at room temperature to enable ready comparison, and also at a higher temperature appropriate to peak performance. An individual table of data and commentary are provided for each family of materials plus source references for all the data. © 2022 The Author(s). Published by IOP Publishing Ltd
    corecore