216 research outputs found
Functionalization of carbon nanotubes using phenosafranin
The functionalization of carbon nanotubes by using phenosafranin was discussed. The self-assembly of phenosafranin (PSF) to multiwalled carbon nanotube (MWNT) was shown by using spectroscopic analysis and atomic force microscopy (AFM) phase imaging studies. It was observed that the shift in absorption spectra was associated with charge transfer of valence electrons from PSF to electron accepting sites on the MWNT. The Raman-active disorder modes were used to fingerprint PSF attachment to MWNT via defect states. A molecular topographic visual confirmation of PSF attached to the MWNT was obtained by using AFM phase imaging
Simplified Space Vector Pulse Width Modulation based on Switching Schemes with Reduced Switching Frequency and Harmonics for Five Level Cascaded H-Bridge Inverter
This paper presents a simplified control strategy of spacevector pulse width modulation technique with a three segment switching sequence and seven segment switching sequence for high power applications of multilevel inverters. In the proposed method, the inverter switching sequences are optimized for minimization of device switching frequency and improvement of harmonic spectrum by using the three most desired switching states and one suitable redundant state for each space vector. The proposed three-segment sequence is compared with conventional seven-segment sequence for five level Cascaded H-Bridge inverter with various values of switching frequencies including very low frequency. The output spectrum of the proposed sequence design shows the reduction of device switching frequency, current and line voltage THD, thereby minimizing the filter size requirement of the inverter, employed in industrial applications, where sinusoidal output voltage is required
A method for the reconstruction of unknown non-monotonic growth functions in the chemostat
We propose an adaptive control law that allows one to identify unstable
steady states of the open-loop system in the single-species chemostat model
without the knowledge of the growth function. We then show how one can use this
control law to trace out (reconstruct) the whole graph of the growth function.
The process of tracing out the graph can be performed either continuously or
step-wise. We present and compare both approaches. Even in the case of two
species in competition, which is not directly accessible with our approach due
to lack of controllability, feedback control improves identifiability of the
non-dominant growth rate.Comment: expansion of ideas from proceedings paper (17 pages, 8 figures),
proceedings paper is version v
Quantum Interference Effects in Electronic Transport through Nanotube Contacts
Quantum interference has dramatic effects on electronic transport through
nanotube contacts. In optimal configuration the intertube conductance can
approach that of a perfect nanotube (). The maximum conductance
increases rapidly with the contact length up to 10 nm, beyond which it exhibits
long wavelength oscillations. This is attributed to the resonant cavity-like
interference phenomena in the contact region. For two concentric nanotubes
symmetry breaking reduces the maximum intertube conductance from to
. The phenomena discussed here can serve as a foundation for building
nanotube electronic circuits and high speed nanoscale electromechanical
devices
Physical characterisation of an alginate/lysozyme nano-laminate coating and its evaluation on ‘coalho’ cheese shelf life
This work aimed at the characterisation of a nanolaminate
coating produced by the layer-by-layer methodology
and its evaluation on the preservation of ‘Coalho’ cheese.
Initially, five alternate layers of alginate and lysozyme were
assembled in an aminolysed/charged polyethylene terephthalate
(A/C PET) and physically characterised by UV/VIS
spectroscopy, contact angle, water vapour (WVTR) and oxygen
(OTR) transmission rates and scanning electron microscopy.
Afterwards, the same methodology was used to
apply the nano-laminate coating in ‘Coalho’ cheese and its
shelf life was evaluated during 20 days in terms of mass
loss, pH, lipid peroxidation, titratable acidity and microbial
count. UV/VIS spectroscopy and contact angle analyses
confirmed the layers’ deposition and the successful assembly
of nano-laminate coating on A/C PET surface. The coating
presented WVTR and OTR values of 1.03×10−3 and 1.28×
10−4 g m−2 s−1, respectively. After 20 days, coated cheese
showed lower values of mass loss, pH, lipidic peroxidation,
microorganisms’ proliferation and higher titratable acidity in
comparison with uncoated cheese. These results suggest that
gas barrier and antibacterial properties of alginate/lysozyme
nanocoating can be used to extend the shelf life of ‘Coalho’
cheese.The author Bartolomeu G. de S. Medeiros is recipient of a scholarship from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES-Brazil). The author Marthyna P. Souza is recipient of a scholarship from Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco (FACEPE, Brazil) and was recipient of a scholarship from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES/PDEE-Brazil). The authors Ana C. Pinheiro, Ana I. Bourbon and Miguel A. Cerqueira are recipients of a fellowship (SFRH/BD/48120/2008, SFRH/BD/73178/2010 and SFRH/BPD/72753/2010, respectively), supported by Fundacao para a Ciencia e Tecnologia, POPH-QREN and FSE (FCT, Portugal). Maria G. Carneiro-da-Cunha express is gratitude to the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) for research grant. The present work was supported by CAPES/PROCAD/NF/1415/2007. The support of EU Cost Action FA0904 is gratefully acknowledged
Understanding the population parameters for unicorn leatherjacket, Aluterus monoceros (Linnaeus, 1758) exploited along the Western Bay of Bengal
Information on age and growth for monocanthid species globally is limited. Aluterus monoceros forms an important fishery in the northern Indian Ocean; however, information on its population dynamics is sparse, as the species has not been explicitly studied. This study elucidates the population parameters from 1031 individuals landed in the multi-day trawl fishery along the western Bay of Bengal from January 2017 to December 2019. Total length ranged from 21.5 to 64.4 cm with a mean of 47.54 cm. Von Bertalanffy growth equation was Lt = 67.67 [1 – e –0.32 (t + 0.0592)]. The fishery was dominated by 3 and 4-year-old age classes and the estimated lifespan was 9.32 years. Recruitment was observed throughout the year and was bimodal, with the major pulse from October – February and the minor pulse from April – June producing 52.44 % and 36.24 %, respectively of the annual recruits. Natural mortality, fishing mortality and total mortality per year were 0.66, 0.55 and 1.21, respectively. Exploitation ratio was 0.45 and exploitation rate was 0.32. Though the species is currently underexploited, considering their lower capture sizes and their occurrence as by-catch in the trawl fishery, precautionary approach is suggested with management measures targeted at protecting their early life history stages
A New Route to Fluorescent SWNT/Silica Nanocomposites: Balancing Fluorescence Intensity and Environmental Sensitivity
We investigate the relationship between photoluminescence (PL) intensity and
environmental sensitivity of surfactant-wrapped single walled carbon nanotubes
(SWNTs). SWNTs were studied under a variety of conditions in suspension as well
as encapsulated in silica nanocomposites, which were prepared by an efficient
chemical vapor into liquids (CViL) sol-gel process. The dramatically improved
silica encapsulation process described here has several advantages, including
fast preparation and high SWNT loading concentration, over other encapsulation
methods used to prepare fluorescent SWNT/silica nanocomposites. Further,
addition of glycerol to SWNT suspensions prior to performing the CViL sol-gel
process allows for the preparation of freestanding fluorescent silica xerogels,
which to the best of our knowledge is the first report of such nanocomposites.
Our spectroscopic data on SWNTs suspended in aqueous surfactants or
encapsulated in silica show that achieving maximum PL intensity results in
decreased sensitivity of SWNT emission response to changes imparted by the
local environment. In addition, silica encapsulation can be used to "lock-in" a
surfactant micelle structure surrounding SWNTs to minimize interactions between
SWNTs and ions/small molecules. Ultimately, our work demonstrates that one
should consider a balance between maximum PL intensity and the ability to sense
environmental changes when designing new SWNT systems for future sensing
applications
Detection, Mapping, and Quantification of Single Walled Carbon Nanotubes in Histological Specimens with Photoacoustic Microscopy
Contains fulltext :
110845.pdf (publisher's version ) (Open Access)AIMS: In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM) was investigated to detect, map, and quantify trace amounts [nanograms (ng) to micrograms (microg)] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds). MATERIALS AND METHODS: Optical-resolution (OR) and acoustic-resolution (AR)--Photoacoustic microscopy (PAM) was employed to detect, map and quantify the SWCNTs in a variety of tissue histological specimens and compared with other optical techniques (bright-field optical microscopy, Raman microscopy, near infrared (NIR) fluorescence microscopy). RESULTS: Both optical-resolution and acoustic-resolution PAM, allow the detection and quantification of SWCNTs in histological specimens with scalable spatial resolution and depth penetration. The noise-equivalent detection sensitivity to SWCNTs in the specimens was calculated to be as low as approximately 7 pg. Image processing analysis further allowed the mapping, distribution, and quantification of the SWCNTs in the histological sections. CONCLUSIONS: The results demonstrate the potential of PAM as a promising imaging technique to detect, map, and quantify SWCNTs in histological specimens, and could complement the capabilities of current optical and electron microscopy techniques in the analysis of histological specimens containing SWCNTs
- …
