45 research outputs found

    A Systematic Review of the Effects of Urban Living on Suicidality and Self-Harm in the UK and Ireland

    Get PDF
    We conducted a systematic review to answer the following: (a) Is there any evidence to support increased prevalence of suicidality and self-harm (i.e. self-harm or suicidality) in urban versus rural environments? (b) What aspects of the urban environment pose risk for suicidality and self-harm? Thirty-five studies met our criteria. Our findings reflect a mixed picture, but with a tendency for urban living to be associated with an increased risk of suicidality and self-harm over rural living, particularly for those living in deprived areas. Further research should focus on the clustering and additive effects of risk and protective factors for suicidality and self-harm in urban environments

    YangZheng XiaoJi exerts anti-tumour growth effects by antagonising the effects of HGF and its receptor, cMET, in human lung cancer cells

    Get PDF
    BACKGROUND: Hepatocyte growth factor (HGF) is a cytokine that has a profound effect on cancer cells by stimulating migration and invasion and acting as an angiogenic factor. In lung cancer, the factor also plays a pivotal role and is linked to a poor outcome in patients. In particular, HGF is known to work in combination with EGF on lung cancer cells. In the present study, we investigated the effect of a traditional Chinese medicine reported in cancer therapies, namely YangZheng XiaoJi (YZXJ) on lung cancer and on HGF mediated migration and invasion of lung cancer cells. METHODS: Human lung cancer cells, SKMES1 and A549 were used in the study. An extract from the medicine was used. Cell migration was investigated using the EVOS and by ECIS. Cell–matrix adhesion and in vitro invasion were assessed. In vivo growth of lung cancer was tested using an in vivo xenograft tumour model and activation of the HGF receptor in lung tumours by an immunofluorescence method. RESULTS: Both lung cancer cells increased their migration in response to HGF and responded to YZXJ by reducing their speed of migration. YZXJ markedly reduced the migration and in vitro invasiveness induced by HGF. It worked synergistically with PHA665752 and SU11274, HGF receptor inhibitors on the lung cancer cells both on HGF receptor activation and on cell functions. A combination of HGF and EGF resulted in a greater increase in cell migration, which was similarly inhibited by YZXJ, and in combination with the HGF receptor and EGF receptor inhibitors. In vivo, YZXJ reduced the rate of tumour growth and potentiated the effects of PHA665752 on tumour growth. It was further revealed that YZXJ significantly reduced the degree of phosphorylation of the HGF receptor in lung tumours. CONCLUSION: YZXJ has a significant role in reducing the migration, invasion and in vivo tumour growth of lung cancer and acts to inhibit the migratory and invasive effects induced by HGF and indeed by HGF/EGF. This effect is likely attributed to the inhibition of the HGF receptor activation. These results indicate that YZXJ has a therapeutic role in lung cancer and that combined strategy with methods to block HGF and EGF should be considered. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-015-0639-1) contains supplementary material, which is available to authorized users

    The Sylvester Resultant Matrix and Image Deblurring

    Get PDF
    This paper describes the application of the Sylvester resultant matrix to image deblurring. In particular, an image is represented as a bivariate polynomial and it is shown that operations on polynomials, specifically greatest common divisor (GCD) computations and polynomial divisions, enable the point spread function to be calculated and an image to be deblurred. The GCD computations are performed using the Sylvester resultant matrix, which is a structured matrix, and thus a structure-preserving matrix method is used to obtain a deblurred image. Examples of blurred and deblurred images are presented, and the results are compared with the deblurred images obtained from other methods

    A unified framework for isotropic meshing based on narrow-band Euclidean distance transformation

    Get PDF
    In this paper, we propose a simple-yet-effective method for isotropic meshing relying on Euclidean distance transformation based centroidal Voronoi tessellation (CVT). Our approach improves the performance and robustness of computing CVT on curved domains while simultaneously providing high-quality output meshes. While conventional extrinsic methods compute CVTs in the entire volume bounded by the input model, we restrict the computation to a 3D shell of user-controlled thickness. Taking voxels which contain surface samples as sites, we compute the exact Euclidean distance transform on the GPU. Our algorithm is parallel and memory-efficient, and can construct the shell space for resolutions up to 20483 at interactive speed. The 3D centroidal Voronoi tessellation and restricted Voronoi diagrams are also computed efficiently on the GPU. Since the shell space can bridge holes and gaps smaller than a certain tolerance, and tolerate non-manifold edges and degenerate triangles, our algorithm can handle models with such defects, which typically cause conventional remeshing methods to fail. Our method can process implicit surfaces, polyhedral surfaces, and point clouds in a unified framework. Computational results show that our GPU-based isotropic meshing algorithm produces results comparable to state-of- the-art techniques, but is significantly faster than conventional CPU-based implementations.MOE (Min. of Education, S’pore)Published versio

    Genshanmen urban centre and transport interchange

    Full text link
    corecore