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Abstract In this paper, we propose a simple-

yet-effective method for isotropic meshing relying on

Euclidean distance transformation based centroidal

Voronoi tessellation (CVT). Our approach improves

the performance and robustness of computing CVT on

curved domains while simultaneously providing high-

quality output meshes. While conventional extrinsic

methods compute CVTs in the entire volume bounded

by the input model, we restrict the computation

to a 3D shell of user-controlled thickness. Taking

voxels which contain surface samples as sites, we

compute the exact Euclidean distance transform on the

GPU. Our algorithm is parallel and memory-efficient,

and can construct the shell space for resolutions up

to 20483 at interactive speed. The 3D centroidal

Voronoi tessellation and restricted Voronoi diagrams

are also computed efficiently on the GPU. Since

the shell space can bridge holes and gaps smaller

than a certain tolerance, and tolerate non-manifold

edges and degenerate triangles, our algorithm can

handle models with such defects, which typically cause

conventional remeshing methods to fail. Our method

can process implicit surfaces, polyhedral surfaces, and

point clouds in a unified framework. Computational

results show that our GPU-based isotropic meshing

algorithm produces results comparable to state-of-

the-art techniques, but is significantly faster than
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1 Introduction

Triangle meshes have found widespread acceptance

in computer graphics as a simple, convenient,

and versatile representation of surfaces. However,

raw meshes obtained from 3D scanners are often

unsuitable for subsequent geometric processing, since

they may contain holes, gaps, noise, degenerate

triangles, and non-manifold edges.

A popular approach to improve mesh quality

is to use centroidal Voronoi tessellation (CVT),

which can generate a highly regular distribution

of sites with respect to a given density function.

A typical CVT-based remeshing method iteratively

updates the generator of each Voronoi cell until

it coincides with its center of mass. An isotropic

mesh is then obtained as the dual graph of the

computed CVT. A key step in each iteration in

CVT computation is to construct a Voronoi diagram

(VD). Although this is fairly simple to do in

Euclidean space, doing so in curved domains is

expensive due to the lack of a closed-form formula

for geodesic distance. To tackle this challenge, some

researchers parameterize the input models in R2

and computed a 2D CVT whose density function

compensates for the parameterization distortion.

These parameterization based methods can compute

intrinsic CVTs on simple meshes of good quality,

but they do not work for point clouds, imperfect
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meshes, or meshes with complicated topology,

where parameterization is non-trivial. A practical

alternative is to compute a restricted Voronoi

diagram (RVD) [1], which is the intersection of the

given model and a CVT defined in R3. RVD methods

are easy to implement and can easily handle models

with complicated geometry and topology. Although

efficient clipping algorithms (e.g., Ref. [2]) have

been proposed, their performance is still too low

for time-critical applications. Moreover, current RVD

methods assume the input is a manifold mesh, and

they do not work for other surface representations,

such as scanned point samples.

In this paper, we propose a new RVD-based

computational framework for isotropic meshing,

with the goal of improving performance as well as

robustness of computing RVD while simultaneously

maintaining the high quality of the output meshes.

Rather than computing CVTs in the entire volume

bounded by the input model, our idea is to restrict

the computation to a 3D shell of user-controlled

thickness. Taking voxels which contain surface

samples as sites, we compute the exact Euclidean

distance transform on the GPU. Our algorithm is

parallel and memory-efficient, and can construct a

shell space with resolution 20483 at interactive speed.

The 3D centroidal Voronoi tessellation and restricted

Voronoi diagrams are also computed efficiently on

the GPU. Computational results show that our

GPU-enabled isotropic meshing algorithm produces

results comparable to state-of-the-art techniques,

but runs significantly faster than conventional CPU-

based implementations. It is also worth noting that

our method can process various representations,

such as implicit surfaces, polyhedral surfaces, and

point clouds, in a unified framework. Moreover,

since the shell space can bridge holes and gaps

smaller than a certain tolerance, and also tolerate

non-manifold edges and degeneracies, our algorithm

works well on imperfect meshes with such defects, for

which conventional remeshing methods often fail. See

Fig. 1.

This paper makes the following contributions:

• We give a unified framework for constructing

isotropic meshes from point clouds, polyhedral

surfaces, and implicit surfaces via voxel

representation. It avoids computationally

expensive components often used in existing

methods, such as data fitting, isosurface

extraction, and geodesic distance computation.

• Our framework produces a topologically

consistent shell under user control, so it can

bridge holes and gaps, and tolerate noise, to

some degree. It also works well for models with

non-manifold edges and degenerate triangles.

• We give a fast, memory-efficient algorithm for

computing narrow-band distance fields on a

GPU. Our implementation on an nVidia Quadro

K5000 with 4 GB RAM can compute the exact

Euclidean distance transform at interactive

speed. The CVT, RVD, and the dual Delaunay

triangulations are also computed in parallel on

the GPU.

Input mesh CVT Dual triangulation

Fig. 1 Isotropic meshing on an imperfect mesh with non-manifold edges, degenerate triangles and holes.

240



A unified framework for isotropic meshing based on narrow-banded Euclidean distance transformation 241

2 Related work

2.1 Geodesic Voronoi diagrams

Although Voronoi diagrams in Euclidean space have

been well studied, Voronoi diagrams in 2-manifold

meshes (geodesic Voronoi diagrams, GVDs) have

received little attention. Liu et al. [3] pointed

out the fundamental difference between conventional

Voronoi diagrams and GVDs, and they pioneered

a practical algorithm for constructing a GVD on

a triangle mesh. Given a triangle mesh M with n

vertices and m (6 n) sites on M , their algorithm

has a theoretical time complexity O(n2 log n) and

runs empirically in linear time when m is close to

n. Liu and Tang [4] proved that the combinatorial

complexity of a GVD is O(m(g+ n)), where g is the

genus of M . Based on a local Voronoi diagram, Xu

et al. [5] developed an exact algorithm for computing

a polyline-sourced GVD on a triangle mesh.

2.2 Centroidal Voronoi tessellations

A centroidal Voronoi tessellation is a Voronoi

diagram whose generating points are the centers of

mass of the corresponding Voronoi cells. Thanks to

its many favorable geometric properties, the CVT

has been used in a wide range of applications [6].

It can be defined by the critical points of the CVT

energy function. A popular way to compute a CVT

is Lloyd’s algorithm [7], which iteratively moves each

generator to the corresponding mass center until

convergence. Lloyd’s method is conceptually simple

and easy to implement, but as a gradient-descent

method, it only has linear convergence. Liu et

al. [8] proved that the CVT energy function has

2nd order smoothness in most situations encountered

in computer graphics, so one can achieve quadratic

or super-linear convergence by use of Newton or

quasi-Newton optimization methods. Rong et al. [9]

developed a GPU-based method for computing a

CVT in the plane and observed significant speedup

over CPU methods.

To compute the CVT on a genus-0 surface, Alliez

et al. [10] conformally parameterized the surface to

a disk and evaluated the centroids over a weighted

density function expressed in R2. Rong et al. [11]

extended the CVT energy function to the spherical

S2 and hyperbolic H2 domains, and thus can process

surfaces of all topological types. Shuai et al. [12]

developed a GPU-enabled algorithm for computing a

periodic CVT in H2 and used it to construct isotropic

meshes for high-genus surfaces. Recently, Wang et

al. [13] proposed an intrinsic method for computing

the CVT on an arbitrary manifold triangle mesh.

Rather than computing the mass centers of Voronoi

cells which requires area integration, their algorithm

computes the Riemannian centers using exponential

maps. These Riemannian centers provide a good

approximation of the mass centers if there are

sufficient seeds.

These parameterization-based and exponential

map based CVT algorithms are intrinsic and thereby

independent of the embedding space. However, they

are computationally expensive and impractical for

time-critical applications. Rather than computing

CVT on surfaces directly, Yan et al. [1] proposed

a novel indirect method based on computing a

restricted Voronoi diagram, that is, the intersection

between the input mesh and a 3D CVT. Using a kd-

tree to quickly identify and compute the intersection

of each triangle face with its incident Voronoi cells,

their algorithm computes the RVD in O(n logm)

time, where m is the number of seed points and n

is the number of triangles of the input mesh. They

also adopted a quasi-Newton method to efficiently

compute the 3D CVT in the volume bounded by the

input mesh.

Lu et al. [14] computed a CVT using line segments

and graphs as generators. CVT can also be defined

using anisotropic metrics [15] and Lp distances [16].

Chen et al. [17] proposed an iterative method

for generating a constrained centroidal Delaunay

mesh (CCDM). With local vertex relation, their

method does not require geodesic distances and can

guarantee that the computed CCDM has the same

topology as the input mesh. However, their method

cannot handle non-manifold edges and degenerate

triangles. It is also unclear whether their method can

be extended to point clouds and implicit functions.

Li et al. [18] presented an elegant method for

triangulating the conformal uniformization domain

via planar Delaunay refinment. They gave explicit

estimates for the Hausdorff distance, normal

deviation, and differences in curvature measures

between the surface and the mesh.

2.3 Distance computation

A key step when intrinsically computing a CVT

on a polyhedral surface is to determine geodesic
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Fig. 2 Overview of our approach using the Sculpture model. (a) Input mesh; (b) shell space with d = 3; (c) CVT with 3000 seeds;

(d) output isotropic mesh.

distances, a fundamental problem in computer

graphics and computational geometry. Classical

computational geometry approaches include the

MMP algorithm [19], the CH algorithm [20], and

their many variants (e.g., Refs. [21, 22]). Although

these methods can compute the exact solution on

arbitrary manifold meshes, they are computationally

expensive. Partial differential equation (PDE)

approaches, such as the fast marching method [23]

and the heat method [24], are efficient and can

flexibly handle a wide range of geometric domains,

including triangle meshes, point clouds, regular grids

and volumes. They can also be easily generalized

to an anisotropic setting [25]. However, they only

compute a first-order approximation, and thus

the results are sensitive to model tessellation and

resolution. Motivated by the local structure of the

discrete geodesic problem, Ying et al. [26] proposed

the saddle vertex graph (SVG), a sparse graph

which encodes geodesic information on a triangle

mesh. Computing a geodesic distance is equivalent

to finding a shortest path in this graph. However,

the performance of SVG methods depends greatly

on the number and distribution of saddle vertices in

the input meshes, and it is unclear whether it can

be extended to imperfect meshes, implicit surfaces,

or point clouds, as it is difficult to determine saddle

vertices in such cases.

Since computing geodesic distances is expensive,

many applications seek practical ways to give

approximate solutions with accuracy control. The

most widely used approach is to use a distance

field, which encodes the distance from each grid

node to the surface of the model (uniformly or

adaptively) [27]. An approximate distance field can

be efficiently computed by a distance-transformation

method, e.g., based on the chamfer distance

transformation (CDT) [28] or the vector-city vector

distance transform (VCVDT) [29].

Recent work has focused on the Euclidean distance

transformation (EDT). Given a d-dimensional grid

with N = nd grid points, where S grid points

are colored and the other N − S grid points are

not colored, for each grid point, the EDT aims

to compute the Euclidean distance to the closest

colored grid point. However, this process is typically

computationally intensive in 3 or more dimensions.

GPU-based algorithms have been developed to

provide an efficient solution [30]. Cao et al. [31]

presented an efficient algorithm, the parallel banding

algorithm (PBA), to compute the exact EDT on a

GPU. Their algorithm, however, can quickly exhaust

graphics memory: the highest resolution that can be

achieved by PBA is 5123 on a cutting-edge graphics

card, which does not provide sufficient accuracy to

guarantee the correctness of the constructed CVT

for many real-world models. The new algorithm

proposed in this paper is more sophisticated in
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its memory usage and can achieve 3D EDT for

resolutions up to 20483.

2.4 Surface reconstruction and meshing

from points

Constructing a high-quality mesh from unorganized

point samples plays an important role in computer

graphics. Although numerous techniques are

available, all tackle the problem in two separate

stages, that is, constructing an initial surface

first, and then improving the mesh quality

using the remeshing techniques. Existing surface

reconstruction methods are based on either

computational geometry or implicit functions.

Computational geometry approaches aim to

generate a piecewise linear surface, topologically

equivalent to the sampled surface and also

geometrically close. Representative work includes

crust [32], cocone [33], and their many variants.

These algorithms provide theoretical guarantees if

the input points are densely sampled. However, in

practice, this condition may not hold.

In presence of noise and outliers, which is

typical for samples obtained by scanning, a common

approach is to fit the samples using the zero

set of an implicit function. A popular method

for oriented point samples is Poisson surface

reconstruction [34]; an implicit surface is first

generated and tessellated into a polygonal mesh

later. Although tessellation step can be computed

on the GPU, fitting an implicit surface uses time-

consuming global operators. Sheung and Wang [35]

presented a robust mesh reconstruction method for

unoriented noisy points. An approximate CVT is

computed on the point set to down-sample the

input point cloud to a smaller number of pointa.

Then, a Voronoi diagram based mesh generation

method, tight cocone [36], is employed to generate

the mesh. As VD-based surface reconstruction is

memory intensive, only datasets with a modest

number of points can be handled. Moreover, it is

hard to parallelize the computation.

Our proposed method is different from existing

ones in that it performs surface reconstruction

and meshing in an integrated manner. Our

method is more efficient and elegant since it

can completely bypass implicit fitting as well as

isosurface extraction, making it an ideal tool for

processing scanned point samples.

3 Algorithm

Let O denote the input 3D mesh. We first construct

a voxel representation M of O at a given resolution

res. Then we construct a shell space P̄ consisting

of off-surface points, where each point in P̄ has a

distance dp 6 d to its closest point on M (see

Fig. 2). The threshold d is specified by the user and

is model-dependent.

Our isotropic meshing algorithm adopts Lloyd’s

framework. Starting with k randomly generated

seeds, it minimizes the CVT energy by iteratively

updating the seed positions. In each iteration, it

computes a Voronoi diagram confined to the shell

space and moves the seeds toward the corresponding

mass centers. The algorithm projects the seeds back

to P̄ if they move outside the shell space. After

convergence, it propagates the seed information in

the shell space to determine connected Voronoi cells

and extracts the dual Delaunay triangulation. Our

method is outlined in Algorithm 1, and described in

detail in the following.

Algorithm 1: Isotropic meshing based on EDT

Input: 3D surface O, voxel resolution res, shell space

thickness d, convergence threshold ε, and number of

seeds k.

Output: Isotropic mesh with k vertices.

1: S ← k random seeds

2: M ← Voxelization(O, res)

3: P̄ ← ShellSpaceConstruction(M , res, d)

4: while convergence not reached do

5: Vk ← SearchClosestSeedInShell(P̄ , S)

6: Ck ← CenterMass(Vk)

7: C̄k ← UpdateSeed(P̄ , Ck)

8: S ← C̄

9: end while

10: Vk ← ShellFlooding(P̄ , S)

11: return DualTriangulation(Vk)

3.1 Memory-efficient shell space

construction

We introduce a memory-efficient way to construct

shell spaces in real-time. We extend the parallel

banding algorithm (PBA) of Cao et al. [31] to

compute the Euclidean distance transform (EDT) in

a narrow-band. Their algorithm partitions the input

domain into small chunks of equal size, which can be

processed in parallel. The results are then merged
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concurrently. Although their method is exact and

efficient, it is impractical for large models due to its

memory requirements. Our method overcomes this

problem by on-the-fly computation and integrating

fast bitmap indexing technology on the GPU. We

explain the principle in two dimensions for simplicity;

the idea easily extends to three dimensions.

The input image is divided into a virtual grid

made up of occupied and unoccupied pixels; the

former pixels, the sites ∈ S, are run-length encoded.

Every pixel undergoes a two-step process: (i) find

the nearest site Sij , among all sites in row j; (ii)

determine the closest site, among all the nearest

sites, in the current column i. During the first step

we assign a thread to process each row as it is

more efficient to do more computation in a single

thread than to repeatedly access global memory

with multiple threads. The second step extends the

divide-and-merge approach of PBA, by employing

warp-vote and warp-shuffle functions in NVIDIA’s

CUDA to exchange information between nearest

sites within a chunk. (A warp is a pool of threads

that executes in parallel.) Every thread in the

same warp does the same calculation, avoiding warp

variations that often compromise performance.

Figure 3 shows an example. When the threads

in a warp reach column i, each row computes the

corresponding nearest sites Sij . The nearest site of

the current pixel is shown in blue. Note that only

// For simplicity, we give a 2D version here

function ShellSpaceConstruction(M, res, d)

for all thread j = 0 to res in parallel do

for i = 0 to res do

Sij ← GetNearestSite(M, j, d)

discard Sij if ‖ dij ‖> d

set barrier // Ensure every thread gets Sij

// Compare with other threads in same warp

// warp size = h, current warp id = k

Ck ← Sij

for x = 0 to h do

if IsCloser(Ck, Cx) then

Ck ← Cx

id← x

end if

end for

// Mark the closest site of pixel (i, j)

Bitmap[i][id] = true

end for

end for

Collect and merge the closest sites if Bitmap[i][j] = true

return P̄ // return pixels located inside the shell

some sites (empty blue dots) satisfy the distance

constraint. Therefore, sites Si1 of thread 1 can be

safely discarded. We set a barrier to ensure that

every thread obtains some sites before exchanging

information. After synchronization, we sweep each

Sij to other threads in the same warp to update

the closest site of the current pixel (i, j), based

on the distance function dij . A bitmap stores a

Boolean value for every pixel; 0 indicates that the

Fig. 3 Illustrative example of distance field computation in a narrow band. See the text for an explanation and function

ShellSpaceConstruction for the pseudo code.
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corresponding nearest sites cannot be the closest

sites of the current column. Then the threads repeat

the same procedure for the next column i + 1, until

they reach the last column. In the final step we

collect the closest sites with value 1 in different

chunks and merge them to find the pixels that

form the shell region. As the nearest sites are

computed on-the-fly and the temporary result only

needs indexing by a bitmap, our algorithm requires

less memory than the PBA method.

3.2 Constructing 3D Voronoi diagrams in

shell space

The shell space represented by P̄ is used to constrain

construction of the Voronoi diagram and update

the positions of seeds. Initially, the seeds S =

{s1, . . . , sk} are located on the input mesh. We

collect points ∈ P̄ that share the same closest seeds

to build the Voronoi diagram.

We perform a proximity search to find the closest

seed for all query points from P̄ . To speed up the

process, the seeds are projected onto a uniform grid

G with smaller resolution of res (e.g., 323), so that,

for a query point q, it just find seeds in the grid cell

Gq in which q falls. If any border of the grid cell is

closer to q than the seed found in Gq, query point q

considers the neighboring cell of Gq.

3.3 Computing the CVT

Updating the seeds’ positions towards a uniform

distribution is crucial for constructing the CVT.

Optimal positions can be reached by minimizing the

following energy function:

E(S) =
m∑
i=1

∫
Vi

ρ(p)‖p − si‖2dp

where Vi is the Voronoi cell of seed si, p ∈ P̄ , and ρ

is a non-negative user-defined density function.

In Lloyd’s algorithm, a seed si moves iteratively

toward the corresponding mass center ci of Voronoi

diagram Vi until convergence. However, the mass

center could be located far from the surface, as it

is constructed in the shell space. We determine the

following new position to replace the mass center in

each iteration:

c̄i = si + u
−−→sici
‖−−→sici‖

where u ∈ R+ is the magnitude of movement of

the seeds. We observe that if the seeds move with

different magnitudes, the area of CVT calls will

largely vary depending on surface curvature. In order

to guarantee topological consistency, the new center

is projected back onto M if it moves outside the shell

space, as shown in Fig. 4.

3.4 Computing the dual triangulations

Upon convergence, all the generators are uniformly

distributed. We next extract the dual Delaunay

triangulation.

First, we find the direct neighbors of all seeds,

where direct means two voxels from their Voronoi

cells are connected. Adjacent neighbors can be

found by flooding the information from all seeds

to all voxels in the shell ∈ P̄ . Each voxel stores

a hash table to hold the locations of its 26

neighbors. Each propagation step updates the

current seed information to neighboring voxels until

all voxels have been reached. This approach avoids

producing the wrong connectivity for seeds that are

geometrically close, but topologically far from each

other. We then organize direct neighbors in clockwise

(a) (b)

Fig. 4 Illustration of the update process in an iteration for two seeds. (a) Yellow dots: seeds of Voronoi cells Vi (in red) and Vj
(in green). Red and green dots: their respective mass centers. (b) The seeds move along vector −→sc to new centers (blue dots). We

project c̄j (light blue dot) to the surface since it is outside the shell region.
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order and finally extract the triangle mesh.

4 Experimental results

All tests were performed on a PC with an Intel Xeon

E5 2.5 GHz CPU and an nVidia Quadro K5000 GPU

with 4 GB RAM.

4.1 Narrow-banded distance fields

Table 1 lists the time and peak memory requirements

for varying parameter d and res (see Fig. 5). Clearly,

as d increases, the time increases insignificantly

compared to the increased number of nearest sites

in the shell. This is due to the low cost of

intra-warp communication and the reduced warp

divergence in our algorithm. Also, the memory

consumption is remarkably small, considering the

scene is represented by a high resolution uniform

grid. Previous algorithms (e.g., Ref. [31]) typically

require at least 10 times more memory than ours.

Table 2 compares our algorithm with PBA on

the Sculpture model at resolution 5123. Since PBA

computes a full distance map, its performance is

independent of distance d. Our algorithm consumes

significantly less memory and runs much faster than

PBA for a reasonably small d.

Table 1 Performance of our algorithm for different d at

resolutions 10243 and 20483

Model d
Memory

(MB)
Time (s)

Memory

(GB)
Time (s)

Dinosaur

1 149 1.186 1.18 12.3

3 174 1.239 1.23 13.1

6 206 1.313 1.30 13.3

9 235 1.383 1.36 13.5

Table 2 Comparison of our algorithm to PBA at resolution

5123

Model Memory (MB) d Time (s)

Sculpture (PBA) 1073 — 0.310

26.6 1 0.147 (×2.1)

33.7 3 0.173 (×1.8)

Sculpture (ours) 49.7 6 0.200 (×1.6)

66.1 15 0.286 (×1.1)

76.2 20 0.339 (×0.9)

4.2 CVT computation

Following Ref. [13], we adopted the following criteria

to measure the triangle mesh quality: (i) triangle

quality Q(t) defined by 6Pt/
√

3Ht, where Pt and Ht

are the inradius and the length of the longest edge

of triangle t respectively, (ii) the smallest angle θmin

and the average θavg minimal angle for all triangles,

Fig. 5 Mesh quality for various shell space parameter values d. (a) Triangulation quality measure. (b) Singularity ratio. (c) Our

GPU-based Lloyd algorithm usually converges in 100–200 iterations; d has little impact on the convergence rate. Horizontal axis:

iteration number. Vertical axis: normalized CVT energy function.
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(iii) the ratio of singularities, defined by vs/k, where

vs is the number of non-6-valent vertices and k is the

number of vertices.

Flexible inputs. One advantage of our algorithm

is that the CVT construction is independent of input

topology, thus allowing a wide range of input types

such as point clouds, implicit surfaces, and meshes

with non-manifold surfaces. Figure 6 shows that

our method can be applied to an irregular point

cloud. However, the uneven density of points causes

failure during triangulation, i.e., holes and a non-

manifold mesh. The shell space can help to resolve

this issue because it covers the uneven space where

points cannot be reached. Figure 7 investigates the

influence of shell distance on irregular data sets. It

shows that the geometric shape and density of the

point cloud directly affect the choice of the shell

distance d.

Fig. 6 Experimental results on scanned point samples.

We have also successfully applied our algorithm

to implicit surfaces (see Fig. 8) and other implicit

representations (see Fig. 9). More examples can be

found in Fig. 12.

Figure 1 shows the result from an imperfect mesh

with non-manifold edges, degenerate triangles and

holes. Thanks to its defect-tolerant nature, our

method can handle these issues easily.

Accuracy and efficiency control. We allow the

user to balance accuracy and efficiency by choice

of the offset d. Figure 5 shows the relationship

between the distance d, the number of generators,

and the quality of the remeshed surface. As the

offset increases to 9, with 4000 generators, the mesh

quality of the dinosaur model dramatically drops.

This also happens when the offset decreases to 2 with

1000 generators. Figure 5(b) clearly illustrates the

difference in quality for different values of d. Along

with other examples in Table 3, we can see that

the mesh has best quality with offset distance in the

range 2–6. Figure 10 compares our method with two

parameterization-free isotropic meshing methods, an

intrinsic CVT method [13] and an extrinsic RVD

method [1].

Thanks to its GPU-friendly structure and the

computational power of modern GPUs, our method

runs significantly faster than their CPU-based

implementations.

Topology consistency. The shell space also

guarantees topological consistency between the input

and the remeshed surface. Our algorithm constrains

the seeds to lie within a shell of width 2d during

the update process, so the output is topologically

consistent with respect to the shell. Figure 11

illustrates the importance of this offset volume. The

Fig. 7 Isotropic meshing on noisy scanned point samples. We observe that d ∈ [3, 5] helps to bridge holes and tolerate

noise, producing fairly good results. However, if d exceeds that range, there is a large error in the computed CVT, leading to poor

results.
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Table 3 Model complexity and runtime performance. SS: time (in seconds) for shell construction; m: the number of seeds; T :

average time for each Lloyd iteration; n: the number of iterations; I: singularity ratio

Model d SS (s)
Number of

sites
m T (s) n I Qmin Qavg θmin(◦) θavg(◦) Total time (s)

Sculpture 3 0.966 1.04 × 106 3000 0.064 100 0.25 0.639 0.907 36.1 52.4 7.2

Heptoroid 2 1.429 2.63 × 106 9000 0.138 120 0.24 0.624 0.902 35.3 51.9 19.5

Helix 2 1.212 4.4 × 105 4000 0.036 100 0.29 0.589 0.889 33.4 50.9 5.14

Pegaso 2 0.948 1.33 × 106 8000 0.063 150 0.26 0.600 0.894 31.5 51.3 10.6

Dinosaur
2 0.880 5.5 × 105 4000 0.025 160 0.28 0.636 0.894 30.2 51.2 4.8

4 0.913 5.5 × 105 1000 0.046 170 0.31 0.602 0.900 30.6 51.8 9.2

Armadillo 2 0.944 1.26 × 106 4000 0.051 200 0.26 0.613 0.902 30.3 51.9 11.3

Mask 3 0.897 6.3 × 105 2000 0.042 170 0.28 0.613 0.901 33.4 51.9 8.2

Trung hand (points) 2 0.949 1.17 × 106 2000 0.042 100 0.32 0.198 0.895 12.8 51.5 5.2

Turtle toy (points) 4 0.946 8.2 × 105 2000 0.077 120 0.22 0.373 0.911 23.5 52.6 10.8

Baby head (points) 5 0.26 2.8 × 105 3000 0.069 120 0.29 0.279 0.891 16.9 51.1 9.34

Fig. 8 Generating isotropic meshes from an implicit function.

There are 3000 seeds and d=3.

Fig. 9 Generating isotropic meshes with 8000 seeds and

d=2 from an implicit representation: layered depth normal

image [37].

Ours RVD Intrinsic CVT

θavg =53.1◦, I=0.22 θavg =55.1◦, I=0.13 θavg =53.8◦, I=0.18

Qavg =0.92, T =9.1 s Qavg =0.94, T =354 s Qavg =0.92, T =2109 s

θavg =52.1◦, I=0.25 θavg =54.1◦, I=0.18 θavg =53.3◦, I=0.22

Qavg =0.90, T =7.2 s Qavg =0.93, T =491 s Qavg =0.92, T =3357 s

Fig. 10 Comparison with the RVD method [1] and the intrinsic

CVT method [13].

bottle model consists of an inner tube which is very

close to the outer surface, close enough that only a

shell of width 2 (d = 1) can separate these two parts

when the resolution is 10243. However, width 2 is so

thin that the seeds can barely move inside, leading to

poor remeshing quality (Qavg = 0.86, Qmin = 0.10).

A possible solution would be to increase the grid

size. Since our approach is scalable, this could

be improved by using a graphic card with larger

memory.
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Fig. 11 Remeshing the genus-2 Knotty Bottle model with 9000

seeds. As its inner tube is very close to the outer surface, d = 1

is needed (at resolution 10243) to produce a shell space with the

same topology as the mesh, whereas d = 2 does not give such a

guarantee.

Fig. 12 Experimental results. Images are rendered at high-

resolution, allowing zooming in for examination.

5 Conclusions

This paper has presented a robust, efficient

method for constructing isotropic meshes using

the Euclidean distance transform. Our algorithm

constructs a narrow band enclosing the input

surface, in which 3D centroidal Voronoi tessellations

and restricted Voronoi diagrams are computed.

Our algorithm is fully parallel and memory-

efficient, and can construct the shell space with

resolution up to 20483 at interactive speed.

Moreover, our method can process implicit surfaces,

polyhedral surfaces and point clouds in a unified

framework. Computational results show that our

GPU-friendly isotropic meshing algorithm produces

results comparable to state-of-the-art techniques,

but runs significantly faster than conventional CPU-

based implementations.

Our current implementation adopts a constant

resolution to construct the shell space. This,

however, is not optimal, since it is pessimistic for

the regions with fairly flat geometry, and it may

be inadequate for the highly-curved regions. In

the future, we aim to develop a geometry-aware

algorithm for constructing in parallel the shell space

with adaptive resolution.
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